We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
where $f(z)=\sum _{n=0}^\infty a_n z^n \in H({\mathbb D})$ and $(X_n)_{n \geq 0}$ is a standard sequence of independent Bernoulli, Steinhaus, or complex Gaussian random variables. In this paper, we demonstrate that prescribing a polynomial growth rate for random analytic functions over the unit disk leads to rather satisfactory characterizations of those $f \in H({\mathbb D})$ such that ${\mathcal R} f$ admits a given rate almost surely. In particular, we show that the growth rate of the random functions, the growth rate of their Taylor coefficients, and the asymptotic distribution of their zero sets can mutually, completely determine each other. Although the problem is purely complex analytic, the key strategy in the proofs is to introduce a class of auxiliary Banach spaces, which facilitate quantitative estimates.
Let $f(z)=\sum _{n=0}^{\infty }a_n z^n \in H(\mathbb {D})$ be an analytic function over the unit disk in the complex plane, and let $\mathcal {R} f$ be its randomization:
where $(X_n)_{n\ge 0}$ is a standard sequence of independent Bernoulli, Steinhaus, or Gaussian random variables. In this note, we characterize those $f(z) \in H(\mathbb {D})$ such that the zero set of $\mathcal {R} f$ satisfies a Blaschke-type condition almost surely:
For n≥2, a hypersurface in the open unit ball Bn in is constructed which satisfies the generalized Blaschke condition and is a uniqueness set for all Hp(Bn) with p>0. If n≥3, the hypersurface can be chosen to have finite area.