An ergodic dynamical system $\mathbf {X}$ is called dominant if it is isomorphic to a generic extension of itself. It was shown by Glasner et al [On some generic classes of ergodic measure preserving transformations. Trans. Moscow Math. Soc. 82(1) (2021), 15–36] that Bernoulli systems with finite entropy are dominant. In this work, we show first that every ergodic system with positive entropy is dominant, and then that if $\mathbf {X}$ has zero entropy, then it is not dominant.