We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Infective endocarditis remains a severe complication associated with a high morbidity and mortality in patients after heart valve replacement. Exploration of the pathogenesis is of high demand and we, therefore, present a competent model that allows studying bacterial adherence and the role of plasma fibrinogen in this process using a new in-house designed low-volume flow chamber. Three cardiac graft tissues used for pulmonary valve replacement have been tested under shear conditions to investigate the impact of surface composition on the adhesion events.
Methods:
Tissue pieces of cryopreserved homograft (non-decellularised), decellularised homograft and bovine pericardium patch were investigated for fibrinogen binding. Adherence of Staphylococcus aureus to these graft tissues was studied quantitatively under flow conditions in our newly fabricated chamber based on a parallel plates’ modality. The method of counting colony-forming units was reliable and reproducible to assess the propensity of different graft materials for bacterial attachment under shear.
Results:
Bacterial perfusions over all plasma-precoated tissues identified cryopreserved homograft with the lowest affinity for S. aureus compared to decellularised homograft presenting a significantly higher bacterial adhesion (p < 0.05), which was linked to a more avid fibrinogen binding (p < 0.01). Bovine pericardial patch, as a reference tissue in this study, was confirmed to be the most susceptible tissue graft for the bacterial adhesion, which was in line with our previous work.
Conclusion:
The two studied homograft tissues showed different levels of bacterial attachment, which might be postulated by the involvement of fibrinogen in the adhesion mechanism(s) shown previously for bovine tissues.
Polyurethane catheters made of Pellethane 2363-80AE® were treated with a low temperature plasma developed for the decontamination of reusable polymer devices in hospitals. We investigated the modifications of the polymer surface by studying the topographic modifications, the chemical modifications, and their consequences on the wettability and bacterial adhesion. This study showed that plasma treatment modified the topography and grafted oxygen and nitrogen species onto the surface, resulting in an increase in the surface polarity. This effect could be correlated to the number of nitrogen atoms interacting with the surface. Moreover, this study demonstrated the significance of multiscale heterogeneities, and the complexity of industrial medical devices made from polymers. Their surface can be heterogeneous, and they contain additives that can migrate and change the surface composition.
Pasteuria penetrans is a bacterium with the potential to control plant-parasitic nematode populations; the mechanism of spore adhesion, however, is poorly understood. Attachment assays were performed in media supplemented with various concentrations of fibronectin and in the presence and absence of KSCN which modulates hydrophobic interactions. A reduction in the strength of the hydrophobic effect prevented spores from binding to the cuticle as did 20 μg/ml fibronectin. It was also shown directly utilizing a newly-developed technique which utilizes 3-hexadecanoyl-7-hydro-coumarin as an indicator of the fibronectin binding to the spore surface that the presence of KSCN prohibited binding. This effect was interpreted to indicate that the reduction of binding was the direct result of the influence of hydrophobic interactions between the fibronectin and the spore surface. Western blot analysis of cuticle extracts of Meloidogyne incognita and Caenorhabditis elegans revealed small amounts of fibronectin to be present. Fibronectin, or a similar receptor, present in the cuticle could be responsible for the adhesion of P. penetrans by hydrophobic interactions.
The bacterium Pseudomonas aeruginosa (PA) produces two carbohydrate binding lectins, designated PA lectin-I and lectin-II (PA-IL, PA-IIL). Both lectins are used by the bacterium to adhere to the glycocalyx of mammalian cells. In addition, the lectins immobilize ciliary beat. The kinetics of ciliary beat inhibition by each individual lectin have been analysed; however, their joint action on cilia has not been reported. Here we demonstrate that PA-IL and PA-IIL inhibit ciliary beat in a similar time-dependent manner. If applied simultaneously, ciliary beat inhibition after five hours of incubation was weaker than if each lectin was applied separately. Thus it can be hypothesized that the lectins compete for the same binding site(s) of the glycocalyx. Sugar inhibition experiments demonstrate that D-galactose and L-fucose inhibit both lectins, although clear preferences of D-galactose for PA-IL and of L-fucose for PA-IIL exist. These interactions have to be kept in mind when designing sugar-based therapies.
Pasteuria penetrans is a Gram-positive endospore-producing bacterium that is a parasite of root-knot nematodes. Attachment of endospores to the cuticle of the nematode is the first stage in the infection process. Western blot analysis with monoclonal and polyclonal antibodies that recognize the 30 kDa heparin-binding domain (HBD) and the 45 kDa gelatin-binding domain (GBD) fragments of human fibronectin (Fn) revealed a series of polypeptides of approximately 40, 45 and 55 kDa present in crude cuticle extracts of Meloidogyne javanica 2nd-stage juveniles. The results suggest that the structure of the nematode fibronectin is different to the fibronectins so far characterized. Pre-treatment of endospores of Pasteuria with either the HBD or the GBD was found to inhibit binding to the nematode cuticle. The larger GBD fragment was the most effective at blocking adhesion. Pre-treatment of the GBD fragment with gelatin prevented the GBD fragment from inhibiting endospore attachment to the nematode cuticle.
Epithelial cells and bacteria were sampled from the tonsillar surfaces of seven patients (six males, one female; median age 16 years, range 10 to 21 years) suffering from acute infectious mononucleosis with concomitant pharyngotonsillitis. By using gold-labelled antiserum to human IgG and secretory IgA (sIgA), micro-organisms on the tonsillar surfaces coated with these immunoglobulins could be identified by tracing the gold particles in the transmission electron microscope. The patients harboured significantly fewer bacteria coated with immunoglobulins than did healthy controls. More bacteria were coated with IgG immunoglobulins than with sIgA. Reduced immunoglobulin-coating of the bacteria on the tonsillar surfaces during infectious mononucleosis can explain their tendency to immense local colonization and proneness to penetrate into the epithelial cells.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.