We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy. The purpose of this research is comparison between 6 MV Primus LINAC simulation output with commissioning data using EGSnrc and build a Monte Carlo geometry of 6 MV Primus LINAC as realistically as possible. The BEAMnrc and DOSXYZnrc (EGSnrc package) Monte Carlo model of the LINAC head was used as a benchmark.
Methods
In the first part, the BEAMnrc was used for the designing of the LINAC treatment head. In the second part, dose calculation and for the design of 3D dose file were produced by DOSXYZnrc. The simulated PDD and beam profile obtained were compared with that calculated using commissioning data. Good agreement was found between calculated PDD (1·1%) and beam profile using Monte Carlo simulation and commissioning data. After validation, TPR20,10, TMR and Sp values were calculated in five different field.
Results
Good agreement was found between calculated values by using Monte Carlo simulation and commissioning data. Average differences for five field sizes in this approach is about 0·83% for Sp. for TPR20,10 differences for field sizes 10×10 cm2 is 0·29% and for TMR in five field sizes, the average value is ~1·6%.
Conclusion
In conclusion, the BEAMnrc and DOSXYZnrc codes package have very good accuracy in calculating dose distribution for 6 MV photon beam and it can be considered as a promising method for patient dose calculations and also the Monte Carlo model of primus linear accelerator built in this study can be used as method to calculate the dose distribution for cancer patients.
Superficial X-ray therapy units are used for the treatment of certain types of skin cancer and some severe dermatological conditions. The performance assessment and beam characteristics of the superficial unit are very important to ensure accurate dose delivery during patient treatment. Both experimental measurements and Monte Carlo calculations can be used for this purpose.
Purpose
This study aims to investigate whether it is possible to reproduce experimentally measured data for the XSTRAHL 150 superficial X-ray unit with simulations using the BEAMnrc Monte Carlo code.
Materials and Methods
The experimental procedure applied in this study included the following: experimental measurements of different X-ray spectra, half-value layers, percentage depth dose and beam profiles. Monte Carlo modelling of the XSTRAHL 150 unit was performed with the BEAMnrc code. The validity of the model was checked by comparing the theoretical calculations with experimental measurements.
Results
There was good agreement (∼1%) between experimentally measured and simulated X-ray spectra. Results of half-value layers obtained from simulated and measured spectra showed that there was a maximum of 3·6% difference between BEAMnrc and measurements and a minimum of 2·3%. In addition, simulated percentage depth dose and profile curves have been compared against experimental measurements and show good agreement (within 2% for the depth dose curves and 3–5% for beam profile curves, depending on the applicator size).
Conclusion
The results of this study provide information about particles’ interaction in different kilovoltage and filter combinations. This information is useful for X-ray tube design and development of new target/filter combinations to improve beam quality in superficial X-ray radiotherapy. The data presented here may provide a base for comparison and a reference for other or potential new users of the XSTRAHL 150 X-ray unit.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.