We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The objective of this article is to characterise elimination of finite generalised imaginaries as defined in [9] in terms of group cohomology. As an application, I consider series of Zariski geometries constructed [10, 23, 24] by Hrushovski and Zilber and indicate how their nondefinability in algebraically closed fields is connected to eliminability of certain generalised imaginaries.
have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.
Let $k$ be a base commutative ring, $R$ a commutative ring of coefficients, $X$ a quasi-compact quasi-separated $k$-scheme, and $A$ a sheaf of Azumaya algebras over $X$ of rank $r$. Under the assumption that $1/r\in R$, we prove that the noncommutative motives with $R$-coefficients of $X$ and $A$ are isomorphic. As an application, we conclude that a similar
isomorphism holds for every $R$-linear additive invariant. This leads to several computations.
Along the way we show that, in the case of finite-dimensional algebras of finite
global dimension, all additive invariants are nilinvariant.
We study the slice filtration for the K-theory of a sheaf of Azumaya algebras A, and for the motive of a Severi-Brauer variety, the latter in the case of a central simple algebra of prime degree over a field. Using the Beilinson–Lichtenbaum conjecture, we apply our results to show the vanishing of SK2(A) for a central simple algebra A of square-free index (prime to the characteristic). This proves a conjecture of Merkurjev.
Let X be a regular noetherian scheme of finite Krull dimension with involution σ and an Azumaya algebra over X with involution τ of the second kind with respect to σ. We construct a hermitian and a skew-hermitian Gersten-Witt complex for (, τ) and show that these complexes are exact if X = Spec R is the spectrum of a regular semilocal ring R of geometric type, such that R is a quadratic étale extension of the fixed ring of σ.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.