We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the determinacy of Gale-Stewart games whose winning sets are accepted by realtime 1-counter Büchi automata is equivalent to the determinacy of (effective) analytic Gale-Stewart games which is known to be a large cardinal assumption. We show also that the determinacy of Wadge games between two players in charge of ω-languages accepted by 1-counter Büchi automata is equivalent to the (effective) analytic Wadge determinacy. Using some results of set theory we prove that one can effectively construct a 1-counter Büchi automaton and a Büchi automaton such that: (1) There exists a model of ZFC in which Player 2 has a winning strategy in the Wadge game W(L(), L()); (2) There exists a model of ZFC in which the Wadge game W(L(), L()) is not determined. Moreover these are the only two possibilities, i.e. there are no models of ZFC in which Player 1 has a winning strategy in the Wadge game W(L(), L()).
We prove that some fairly basic questions on automata reading infinite words depend on the models of the axiomatic system ZFC. It is known that there are only three possibilities for the cardinality of the complement of an ω-language \hbox{$L(\mathcal{A})$}L(𝒜) accepted by a Büchi 1-counter automaton \hbox{$\mathcal{A}$}𝒜. We prove the following surprising result: there exists a 1-counter Büchi automaton \hbox{$\mathcal{A}$}𝒜 such that the cardinality of the complement \hbox{$L(\mathcal{A})^-$}L(𝒜) − of the ω-language \hbox{$L(\mathcal{A})$}L(𝒜) is not determined by ZFC: (1) There is a model V1 of ZFC in which \hbox{$L(\mathcal{A})^-$}L(𝒜) − is countable. (2) There is a model V2 of ZFC in which \hbox{$L(\mathcal{A})^-$}L(𝒜) − has cardinal 2ℵ0. (3) There is a model V3 of ZFC in which \hbox{$L(\mathcal{A})^-$}L(𝒜) − has cardinal ℵ1 with ℵ0< ℵ1< 2ℵ0.
We prove a very similar result for the complement of an infinitary rational relation accepted by a 2-tape Büchi automaton ℬ. As a corollary, this proves that the continuum hypothesis may be not satisfied for complements of 1-counter ω-languages and for complements of infinitary rational relations accepted by 2-tape Büchi automata. We infer from the proof of the above results that basic decision problems about 1-counter ω-languages or infinitary rational relations are actually located at the third level of the analytical hierarchy. In particular, the problem to determine whether the complement of a 1-counter ω-language (respectively, infinitary rational relation) is countable is in Σ13\(Π12 ∪ Σ12).
This is rather surprising if compared to the fact that it is decidable whether an infinitary rational relation is countable (respectively, uncountable).
We consider the family UREC of unambiguous recognizable
two-dimensional languages. We prove that there are recognizable
languages that are inherently ambiguous, that is UREC family is a
proper subclass of REC family. The result is obtained by showing a
necessary condition for unambiguous recognizable languages.
Further UREC family coincides with the class of picture languages
defined by unambiguous 2OTA and it strictly contains its
deterministic counterpart. Some closure and non-closure properties
of UREC are presented. Finally we show that it is undecidable
whether a given tiling system is unambiguous.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.