We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Radiotherapy treatment delivery is evaluated by a pre-treatment patient-specific quality assurance (PSQA) procedure to ensure the patient receives an accurate radiation dose. The current PSQA practice by using conventional phantoms requires more set-up time and cost of purchasing the tools. Therefore, this study aimed to investigate the efficiency of an electronic portal imaging device (EPID) of linear accelerator (LINAC) as a PSQA tool for volumetric-modulated arc therapy (VMAT) planning technique for nasopharyngeal carcinoma (NPC) treatment delivery.
Methods:
A NPC VMAT plan on a Rando phantom was performed by following the Radiation Therapy Oncology Group (RTOG) 0615 protocol. The gamma passing rate of the EPID and PSQA phantom (ArcCHECK) were compared among the gamma criteria of 3%/3 mm, 2%/2 mm and 1%/1 mm, respectively.
Results:
Both EPID and ArcCHECK phantom had distinguishable gamma passing rates in 3%/3 mm and 2%/2 mm with a difference of 0·87% and 0·30%, respectively. Meanwhile, the EPID system had a lower gamma passing rate than the ArcCHECK phantom in 1%/1 mm (21·23% difference). Furthermore, the sensitivity of the EPID system was evaluated and had the largest deviation in gamma passing rate from the reference position in gamma criteria of 2%/2 mm (41·14%) compared to the 3%/3 mm (25·45%) and 1%/1 mm (31·78%), discretely. The best fit line of the linear regression model for EPID was steeper than the ArcCHECK phantom in 3%/3 mm and 2%/2 mm, and vice versa in gamma criteria of 1%/1 mm. This indicates that the EPID had a higher sensitivity than the ArcCHECK phantom in 3%/3 mm and 2%/2 mm but less sensitivity in 1%/1 mm.
Conclusions:
The EPID system was efficient in performing the PSQA test of VMAT treatment in HUSM with the gamma criteria of 3%/3 mm and 2%/2 mm.
Due to the increased degree of modulation and complexity of volumetric-modulated arc therapy (VMAT) plans, it is necessary to have a pre-treatment patient-specific quality assurance (QA) programme. The gamma index is commonly used to quantitatively compare two dose distributions. In this study we investigated the sensitivity of single- and multi-gamma criteria techniques to detect multileaf collimator (MLC) positioning errors using the Varian TrueBeam Electronic Portal Imaging DeviceTM (EPID) dosimetry and the ArcCHECKTM device.
Materials and methods
All active MLC positions of seven intact prostate patients VMAT plans were randomly changed with a mean value of 0.25, 0.5, 1 and 2 mm and a standard deviation of 0.1 mm on 25, 50, 75 and 100% of the control points. The change in gamma passing rates of six gamma criteria of 3%/3 mm, 3%/2 mm, 3%/1 mm, 2%/2 mm, 2%/1 mm and 1%/1 mm were analysed individually (single-gamma criterion) and as a group (multi-gamma criteria) as a function of the simulated errors. We used the improved and global gamma calculation algorithms with a low dose threshold of 10% in the EPID and ArcCHECK software, respectively. The changes in the planning target volume dose distributions and the organs at risk due to the MLC positioning errors were also studied.
Results
When 25, 50, 75 and 100% of the control points were modified by the introduction of the simulated errors, the smallest detectable errors with the EPID were 2, 1, 0.5 and 0.5 mm, respectively, using the multi-gamma criteria technique. Similarly for the single-gamma criteria technique errors as small as 2, 1, 1 and 1 mm applied to 25, 50, 75 and 100% of the control points, respectively, were detectable using a 2%/2 mm criterion. However, the smallest detectable errors with the ArcCHECK when using the multi-gamma criteria technique were 2, 2 and 1 mm when MLC errors were applied on 50, 75 and 100% of the control points. When only 25% of the control points were affected the ArcCHECK were unable to detect any of the errors applied. No noticeable difference was observed in the sensitivity using the single- or the multi-gamma criteria techniques with the ArcCHECK.
Conclusion
The Varian TrueBeam EPID dosimetry shows a higher sensitivity in detecting MLC positioning errors compared with the ArcCHECK regardless of using the single- or the multi-gamma criteria techniques. Higher sensitivity was observed using the multi-gamma criteria technique compared with the single-criterion technique when using the EPID.
The Calypso 4D Localization System gives the possibility to track the tumour during treatment, with no additional ionising radiation delivered. To monitor the patient continuously an array is positioned above the patient during the treatment. We intend to study, for various gantry angles, the attenuation effect of the array for 6- and 10 MV and flattening filter free (FFF) 6- and FFF 10 MV photon beams.
Materials and methods
Measurements were performed using an ion chamber placed in a slab phantom positioned at the linac isocenter for 6 MV, 10 MV, FFF 6 MV and FFF 10 MV photon beams. Measurements were performed with and without array above the phantom for 0°, 10°, 20°, 40° and 50° beam angle for a True Beam STx linac, for 5×5 and 10×10 and 15×15 cm2 field size beams to evaluate the attenuation of the array. A VMAT treatment plan was measured using an ArcCheck with and without the array in the beam path.
Results and discussion
Attenuation measured values were up to 3%. Attenuation values were between 1 and 2% with the exception of the 30°–50° gantry angles which were up to 3.3%. The ratio values calculated in the ArcCheck for relative dose and absolute dose 10 were both 1·00.
Conclusion
Attenuation of the treatment beam by the Calypso array is within acceptable limits.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.