We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish (some directions of) a Ledrappier correspondence between Hölder cocycles, Patterson–Sullivan measures, etc for word-hyperbolic groups with metric-Anosov Mineyev flow. We then study Patterson–Sullivan measures for $\vartheta $-Anosov representations over a local field and show that these are parameterized by the $\vartheta $-critical hypersurface of the representation. We use these Patterson–Sullivan measures to establish a dichotomy concerning directions in the interior of the $\vartheta $-limit cone of the representation in question: if ${\mathsf {u}}$ is such a half-line, then the subset of ${\mathsf {u}}$-conical limit points has either total mass if $|\vartheta |\leq 2$ or zero mass if $|\vartheta |\geq 4.$ The case $|\vartheta |=3$ remains unsettled.
We construct examples of quasi-isometric embeddings of word hyperbolic groups into $\mathsf {SL}(d,\mathbb {R})$ for $d \geq 4$ which are not limits of Anosov representations into $\mathsf {SL}(d,\mathbb {R})$. As a consequence, we conclude that an analogue of the density theorem for $\mathsf {PSL}(2,\mathbb {C})$ does not hold for $\mathsf {SL}(d,\mathbb {R})$ when $d \geq 4$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.