We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With the intention to inform future public health initiatives, we aimed to determine the extent to which typical childhood dietary trajectories predict adolescent cardiovascular phenotypes.
Design
Longitudinal study. Exposure was determined by a 4 d food diary repeated over eight waves (ages 4–15 years), coded by Australian Dietary Guidelines and summed into a continuous diet score (0–14). Outcomes were adolescent (Wave 8, age 15 years) blood pressure, resting heart rate, pulse wave velocity, carotid intima-media thickness, retinal arteriole-to-venule ratio. Latent class analysis identified ‘typical’ dietary trajectories from childhood to adolescence. Adjusted linear regression models assessed relationships between trajectories and cardiovascular outcomes, adjusted for a priori potential confounders.
Setting
Community sample, Melbourne, Australia.
Subjects
Children (n 188) followed from age 4 to 15 years.
Results
Four dietary trajectories were identified: unhealthy (8 %); moderately unhealthy (25 %); moderately healthy (46 %); healthy (21 %). There was little evidence that vascular phenotypes associated with the trajectories. However, resting heart rate (beats/min) increased (β; 95 % CI) across the healthy (reference), moderately healthy (4·1; −0·6, 8·9; P=0·08), moderately unhealthy (4·5; −0·7, 9·7; P=0·09) and unhealthy (10·5; 2·9, 18·0; P=0·01) trajectories.
Conclusions
Decade-long dietary trajectories did not appear to influence macro- or microvascular structure or stiffness by mid-adolescence, but were associated with resting heart rate, suggesting an early-life window for prevention. Larger studies are needed to confirm these findings, the threshold of diet quality associated with these physiological changes and whether functional changes in heart rate are followed by phenotypic change.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.