We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present new Australia Telescope Compact Array (ATCA) radio observations towards N 49, one of the brightest extragalactic supernova remnants (SNRs) located in the Large Magellanic Cloud (LMC). Our new and archival ATCA radio observations were analysed along with Chandra X-ray data. These observations show a prominent ‘bullet’ shaped feature beyond the southwestern boundary of the SNR. Both X-ray morphology and radio polarisation analysis support a physical connection of this feature to the SNR. The ‘bullet’ feature’s apparent velocity is estimated at $\sim$1 300 km s$^{-1}$, based on its distance ($\sim$10 pc) from the remnant’s geometric centre and estimated age ($\sim$7 600 yr). we estimated the radio spectral index, $\alpha= -0.55 \pm 0.03$ which is typical of middle-age SNRs. Polarisation maps created for N 49 show low to moderate levels of mean fractional polarisation estimated at 7$\pm$1% and 10$\pm$1% for 5.5 and 9 GHz, respectively. These values are noticeably larger than found in previous studies. Moreover, the mean value for the Faraday rotation of SNR N 49 from combining CABB data is 212$\pm$65 rad m$^{-2}$ and the maximum value of RM is 591$\pm$103 rad m$^{-2}$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.