We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Wadge hierarchy was originally defined and studied only in the Baire space (and some other zero-dimensional spaces). Here we extend the Wadge hierarchy of Borel sets to arbitrary topological spaces by providing a set-theoretic definition of all its levels. We show that our extension behaves well in second countable spaces and especially in quasi-Polish spaces. In particular, all levels are preserved by continuous open surjections between second countable spaces which implies e.g., several Hausdorff–Kuratowski (HK)-type theorems in quasi-Polish spaces. In fact, many results hold not only for the Wadge hierarchy of sets but also for its extension to Borel functions from a space to a countable better quasiorder Q.
The paper develops high order accurate Runge-Kutta discontinuous local evolution Galerkin (RKDLEG) methods on the cubed-sphere grid for the shallow water equations (SWEs). Instead of using the dimensional splitting method or solving one-dimensional Riemann problem in the direction normal to the cell interface, the RKDLEG methods are built on genuinely multi-dimensional approximate local evolution operator of the locally linearized SWEs on a sphere by considering all bicharacteristic directions. Several numerical experiments are conducted to demonstrate the accuracy and performance of our RKDLEG methods, in comparison to the Runge-Kutta discontinuous Galerkin method with Godunov's flux etc.
We describe a relativistic semi-Lagrangian scheme for the numerical solution of the relativistic Vlasov-Maxwell system. The implementation strategy on a modern non-unified memory access (NUMA) architecture using the OpenMP framework is discussed. We demonstrated that close to perfect scaling can be obtained on modern many-core, multi-socket systems. Application of this code to the problem of relativistic generation of high-harmonic laser radiation is demonstrated. The results are compared to particle-in-cell (PIC) simulations, indicating in particular that for warm plasma the Vlasov simulation is superior. We discuss the impact of plasma temperature on the radiation spectrum and show that the efficiency of harmonic generation depends on the plasma temperature.
Because of stability constraints, most numerical schemes applied to hyperbolic systems of equations turn out to be costly when the flux term is multiplied by some very large scalar. This problem emerges with the M1 system of equations in the field of radiotherapy when considering heterogeneous media with very disparate densities. Additionally, the flux term of the M1 system is non-linear, and in order for the model to be well-posed the numerical solution needs to fulfill conditions called realizability. In this paper, we propose a numerical method that overcomes the stability constraint and preserves the realizability property. For this purpose, we relax the M1 system to obtain a linear flux term. Then we extend the stencil of the difference quotient to obtain stability. The scheme is applied to a radiotherapy dose calculation example.
The formation of singularities in relativistic flows is not well understood. Smooth solutions to the relativistic Euler equations are known to have a finite lifespan; the possible breakdown mechanisms are shock formation, violation of the subluminal conditions and mass concentration. We propose a new hybrid Glimm/central-upwind scheme for relativistic flows. The scheme is used to numerically investigate, for a family of problems, which of the above mechanisms is involved.
The immersed interface technique is incorporated into CIP method to solve one-dimensional hyperbolic equations with piecewise constant coefficients. The proposed method achieves the third order of accuracy in time and space in the vicinity of the interface where the coefficients have jump discontinuities, which is the same order of accuracy of the standard CIP scheme. Some numerical tests are given to verify the accuracy of the proposed method.
We propose and study a number of layer methods for Navier‒Stokes equations (NSEs) with spatial periodic boundary conditions. The methods are constructed using probabilistic representations of solutions to NSEs and exploiting ideas of the weak sense numerical integration of stochastic differential equations. Despite their probabilistic nature, the layer methods are nevertheless deterministic.
We study the simulation of specular reflection in a level set method implementation for wavefront propagation in high frequency acoustics using WENO spatial operators. To implement WENO efficiently and maintain convergence rate, a rectangular grid is used over the physical space. When the physical domain does not conform to the rectangular grid, appropriate boundary conditions to represent reflection must be derived to apply at grid locations that are not coincident with the reflecting boundary. A related problem is the extraction of the normal vectors to the boundary, which are required to formulate the reflection condition. A separate level set method is applied to pre-compute the boundary normals which are then stored for use in the wavefront method. Two approaches to handling the reflection boundary condition are proposed and studied: one uses an approximation to the boundary location, and the other uses a local reflection principle. The second method is shown to produce superior results.
An algorithm for computing wavefronts, based on the high frequency approximation to the wave equation, is presented. This technique applies the level set method to underwater acoustic wavefront propagation in the time domain. The level set method allows for computation of the acoustic phase function using established numerical techniques to solve a first order transport equation to a desired order of accuracy. Traditional methods for solving the eikonal equation directly on a fixed grid limit one to only the first arrivals, so these approaches are not useful when multi-path propagation is present. Applying the level set model to the problem allows for the time domain computation of the phase function on a fixed grid, without having to restrict to first arrival times. The implementation presented has no restrictions on range dependence or direction of travel, and offers improved efficiency over solving the full wave equation which under the high frequency assumption requires a large number of grid points to resolve the highly oscillatory solutions. Boundary conditions are discussed, and an approach is suggested for producing good results in the presence of boundary reflections. An efficient method to compute the amplitude from the level set method solutions is also presented. Comparisons to analytical solutions are presented where available, and numerical results are validated by comparing results with exact solutions where available, a full wave equation solver, and with wavefronts extracted from ray tracing software.
This paper is devoted to the study of the Eulerian-Lagrangian method (ELM) for convection-diffusion equations on unstructured grids with or without accurate numerical integration. We first propose an efficient and accurate algorithm to calculate the integrals in the Eulerian-Lagrangian method. Our approach is based on an algorithm for finding the intersection of two non-matching grids. It has optimal algorithmic complexity and runs fast enough to make time-dependent velocity fields feasible. The evaluation of the integrals leads to increased precision and the unconditional stability. We demonstrate by numerical examples that the ELM with our proposed algorithm for accurate numerical integration has the following two features: first it is much more accurate and more stable than the ones with traditional numerical integration techniques and secondly the overall cost of the proposed method is comparable with the traditional ones.
This paper considers the effect of a hard-wall beach on the downstream side of submerged parallel bars in a breakwater. In previous research, it was assumed that the beach can absorb all of the transmitted wave energy, when an optimal dimension for a submerged parallel bar is obtained and the wave amplitude is reduced as more bars are installed. However, for a hard-wall beach there are waves reflected from the beach that change the long-term wave interaction. We adopt the linear shallow water equations in Riemann invariant form and use the method of characteristics, in a procedure applicable to various formations of submerged rectangular bars. The distance from the parallel bar (or bars) to the beach determines the phase differences between right running waves in the beach basin and whether they superpose destructively or constructively before hitting the beach, to define the safest and the most dangerous cases. Our numerical calculations for one bar, two bars and for periodic rectangular bars confirm the analytical formulae obtained.
We perform a comparison in terms of accuracy and CPU time between second order BDF semi-Lagrangian and Lagrange-Galerkin schemes in combination with high order finite element method. The numerical results show that for polynomials of degree 2 semi-Lagrangian schemes are faster than Lagrange-Galerkin schemes for the same number of degrees of freedom, however, for the same level of accuracy both methods are about the same in terms of CPU time. For polynomials of degree larger than 2, Lagrange-Galerkin schemes behave better than semi-Lagrangian schemes in terms of both accuracy and CPU time; specially, for polynomials of degree 8 or larger. Also, we have performed tests on the parallelization of these schemes and the speedup obtained is quasi-optimal even with more than 100 processors.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.