Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T23:08:39.275Z Has data issue: false hasContentIssue false

Probabilistic Methods for the Incompressible Navier–Stokes Equations With Space Periodic Conditions

Published online by Cambridge University Press:  04 January 2016

G. N. Milstein*
Affiliation:
Ural Federal University
M. V. Tretyakov*
Affiliation:
University of Leicester and University of Nottingham
*
Postal address: Ural Federal University, Lenin Str. 51, 620083 Ekaterinburg, Russia. Email address: grigori.milstein@usu.ru
∗∗ Postal address: School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK. Email address: michael.tretyakov@nottingham.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose and study a number of layer methods for Navier‒Stokes equations (NSEs) with spatial periodic boundary conditions. The methods are constructed using probabilistic representations of solutions to NSEs and exploiting ideas of the weak sense numerical integration of stochastic differential equations. Despite their probabilistic nature, the layer methods are nevertheless deterministic.

Type
General Applied Probability
Copyright
© Applied Probability Trust 

References

Belopolskaya, Y. and Milstein, G. N. (2003). An approximation method for Navier-Stokes equations based on probabilistic approach. Statist. Prob. Lett. 64, 201211.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. (1988). Spectral Methods in Fluid Dynamics. Springer, New York.Google Scholar
Chorin, A. J. and Marsden, J. E. (2000). A Mathematical Introduction to Fluid Mechanics. Springer, New York.Google Scholar
Dubois, T., Jauberteau, F. and Temam, R. (1999). Dynamic Multilevel Methods and the Numerical Simulation of Turbulence. Cambridge University Press.Google Scholar
Dynkin, E. B. (1965). Markov Processes, Vols I, II. Springer, Berlin.Google Scholar
Fletcher, C. A. J. (1996). Computational Techniques for Fluid Dynamics, Vol. I. Springer, Berlin.Google Scholar
Fletcher, C. A. J. (1996). Computational Techniques for Fluid Dynamics, Vol. II. Springer, Berlin.Google Scholar
Girault, V. and Raviart, P.-A. (1986). Finite Element Methods for Navier-Stokes Equations. Springer, Berlin.Google Scholar
Gobet, E., Lemor, J.-P. and Warin, X. (2005). A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Prob. 15, 21722202.Google Scholar
Kunita, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge University Press.Google Scholar
Ladyzhenskaya, O. A. (1969). The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York.Google Scholar
Ma, J. and Yong, J. (1999). Forward-backward Stochastic Differential Equations and Their Applications (Lecture Notes Math. 1702). Springer, Berlin.Google Scholar
Majda, A. J. and Bertozzi, A. L. (2003). Vorticity and Incompressible Flow. Cambridge University Press.Google Scholar
Milstein, G. N. (2002). The probability approach to numerical solution of nonlinear parabolic equations. Numer. Methods Partial Diff. Equat. 18, 490522.Google Scholar
Milstein, G. N. and Tret'yakov, M. V. (1997). Numerical methods in the weak sense for stochastic differential equations with small noise. SIAM J. Numer. Anal. 34, 21422167.CrossRefGoogle Scholar
Milstein, G. N. and Tretyakov, M. V. (2000). Numerical algorithms for semilinear parabolic equations with small parameter based on approximation of stochastic equations. Math. Comput. 69, 237267.Google Scholar
Milstein, G. N. and Tretyakov, M. V. (2003). Quasi-symplectic methods for Langevin-type equations. IMA J. Numer. Anal. 23, 593626.Google Scholar
Milstein, G. N. and Tretyakov, M. V. (2004). Stochastic Numerics for Mathematical Physics. Springer, Berlin.Google Scholar
Milstein, G. N. and Tretyakov, M. V. (2006). Numerical algorithms for forward-backward stochastic differential equations. SIAM J. Sci. Comput. 28, 561582.Google Scholar
Milstein, G. N. and Tretyakov, M. V. (2007). Discretization of forward-backward stochastic differential equations and related quasi-linear parabolic equations. IMA J. Numer. Anal. 27, 2444.Google Scholar
Milstein, G. N. and Tretyakov, M. V. (2012). Solving the Dirichlet problem for Navier-Stokes equations by probabilistic approach. BIT Numer. Math. 52, 141153.Google Scholar
Milstein, G. N., Repin, Y. M. and Tretyakov, M. V. (2002). Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal. 40, 15831604.Google Scholar
Milstein, G. N., Repin, Y. M. and Tretyakov, M. V. (2002). Symplectic integration of Hamiltonian systems with additive noise. SIAM J. Numer. Anal. 39, 20662088.Google Scholar
Pardoux, É. and Peng, S. (1992). Backward stochastic differential equations and quasilinear parabolic partial differential equations. In Stochastic Partial Differential Equations and Their Applications (Lecture Notes Control Inform. Sci. 176), Springer, Berlin, pp. 200217.Google Scholar
Peskin, C. S. (1985). A random-walk interpretation of the incompressible Navier-Stokes equations. Commun. Pure Appl. Math. 38, 845852.Google Scholar
Peyret, R. (2002). Spectral Methods for Incompressible Viscous Flow. Springer, New York.Google Scholar
Smoller, J. (1983). Shock Waves and Reaction-Diffusion Equations. Springer, New York.CrossRefGoogle Scholar
Suris, Y. B. (1996). Partitioned Runge-Kutta methods as phase volume preserving integrators. Phys. Lett. A 220, 6369.CrossRefGoogle Scholar
Taylor, G.I. (1960). The decay of eddies in a fluid. In The Scientific Papers of Sir Geoffrey Ingram Taylor, Vol. II, ed. Batchelor, G. K., Cambridge University Press, pp. 190192.Google Scholar
Temam, R. (1995). Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia, PA.Google Scholar
Temam, R. (2001). Navier-Stokes Equations, Theory and Numerical Analysis. AMS Chelsea, Providence, RI.Google Scholar
Wesseling, P. (2001). Principles of Computational Fluid Dynamics. Springer, Berlin.Google Scholar