We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the quasi-ergodicity of compact strong Feller semigroups $U_t$, $t> 0$, on $L^2(M,\mu )$; we assume that M is a locally compact Polish space equipped with a locally finite Borel measue $\mu $. The operators $U_t$ are ultracontractive and positivity preserving, but not necessarily self-adjoint or normal. We are mainly interested in those cases where the measure $\mu $ is infinite and the semigroup is not intrinsically ultracontractive. We relate quasi-ergodicity on $L^p(M,\mu )$ and uniqueness of the quasi-stationary measure with the finiteness of the heat content of the semigroup (for large values of t) and with the progressive uniform ground state domination property. The latter property is equivalent to a variant of quasi-ergodicity which progressively propagates in space as $t \uparrow \infty $; the propagation rate is determined by the decay of . We discuss several applications and illustrate our results with examples. This includes a complete description of quasi-ergodicity for a large class of semigroups corresponding to non-local Schrödinger operators with confining potentials.
One of the main challenges in molecular dynamics is overcoming the ‘timescale barrier’: in many realistic molecular systems, biologically important rare transitions occur on timescales that are not accessible to direct numerical simulation, even on the largest or specifically dedicated supercomputers. This article discusses how to circumvent the timescale barrier by a collection of transfer operator-based techniques that have emerged from dynamical systems theory, numerical mathematics and machine learning over the last two decades. We will focus on how transfer operators can be used to approximate the dynamical behaviour on long timescales, review the introduction of this approach into molecular dynamics, and outline the respective theory, as well as the algorithmic development, from the early numerics-based methods, via variational reformulations, to modern data-based techniques utilizing and improving concepts from machine learning. Furthermore, its relation to rare event simulation techniques will be explained, revealing a broad equivalence of variational principles for long-time quantities in molecular dynamics. The article will mainly take a mathematical perspective and will leave the application to real-world molecular systems to the more than 1000 research articles already written on this subject.
We prove the existence and asymptotic behaviour of the transition density for a large class of subordinators whose Laplace exponents satisfy lower scaling condition at infinity. Furthermore, we present lower and upper bounds for the density. Sharp estimates are provided if an additional upper scaling condition on the Laplace exponent is imposed. In particular, we cover the case when the (minus) second derivative of the Laplace exponent is a function regularly varying at infinity with regularity index bigger than
$-2$
.
Draw-down time for a stochastic process is the first passage time of a draw-down level that depends on the previous maximum of the process. In this paper we study the draw-down-related Parisian ruin problem for spectrally negative Lévy risk processes. Intuitively, a draw-down Parisian ruin occurs when the surplus process has continuously stayed below the dynamic draw-down level for a fixed amount of time. We introduce the draw-down Parisian ruin time and solve the corresponding two-sided exit problems via excursion theory. We also find an expression for the potential measure for the process killed at the draw-down Parisian time. As applications, we obtain new results for spectrally negative Lévy risk processes with dividend barrier and with Parisian ruin.
We study a continuous-time branching random walk (BRW) on the lattice ℤd, d ∈ ℕ, with a single source of branching, that is the lattice point where the birth and death of particles can occur. The random walk is assumed to be spatially homogeneous, symmetric and irreducible but, in contrast to the majority of previous investigations, the random walk transition intensities a(x, y) decrease as |y − x|−(d+α) for |y − x| → ∞, where α ∈ (0, 2), that leads to an infinite variance of the random walk jumps. The mechanism of the birth and death of particles at the source is governed by a continuous-time Markov branching process. The source intensity is characterized by a certain parameter β. We calculate the long-time asymptotic behaviour for all integer moments for the number of particles at each lattice point and for the total population size. With respect to the parameter β, a non-trivial critical point βc > 0 is found for every d ≥ 1. In particular, if β > βc the evolutionary operator generated a behaviour of the first moment for the number of particles has a positive eigenvalue. The existence of a positive eigenvalue yields an exponential growth in t of the particle numbers in the case β > βc called supercritical. Classification of the BRW treated as subcritical (β < βc) or critical (β = βc) for the heavy-tailed random walk jumps is more complicated than for a random walk with a finite variance of jumps. We study the asymptotic behaviour of all integer moments of a number of particles at any point y ∈ ℤd and of the particle population on ℤd according to the ratio d/α.
We characterize various forms of positive dependence, such as association, positive supermodular association and dependence, and positive orthant dependence, for jump-Feller processes. Such jump processes can be studied through their state-space dependent Lévy measures. It is through these Lévy measures that we will provide our characterization. Finally, we present applications of these results to stochastically monotone Feller processes, including Lévy processes, the Ornstein–Uhlenbeck process, pseudo-Poisson processes, and subordinated Feller processes.
For spectrally negative Lévy processes, we prove several fluctuation results involving a general draw-down time, which is a downward exit time from a dynamic level that depends on the running maximum of the process. In particular, we find expressions of the Laplace transforms for the two-sided exit problems involving the draw-down time. We also find the Laplace transforms for the hitting time and creeping time over the running-maximum related draw-down level, respectively, and obtain an expression for a draw-down associated potential measure. The results are expressed in terms of scale functions for the spectrally negative Lévy processes.
Uniformization transforms a pseudo-Poisson process with unequal intensities (leaving rates) into one with uniform intensity. Self-transitions is the price to pay. Two intensities arise when one considers an absorbing barrier of a Markov process as a body in its own right: a pair of Markov processes intertwined by an extended Chapman–Kolmogorov equation naturally arises. We show that Sauer's two-state space empathy theory handles such intertwined processes. The price of self-transitions is also avoided.
We are interested in the rate of convergence of a subordinate Markov process to its invariant measure. Given a subordinator and the corresponding Bernstein function (Laplace exponent), we characterize the convergence rate of the subordinate Markov process; the key ingredients are the rate of convergence of the original process and the (inverse of the) Bernstein function. At a technical level, the crucial point is to bound three types of moment (subexponential, algebraic, and logarithmic) for subordinators as time t tends to ∞. We also discuss some concrete models and we show that subordination can dramatically change the speed of convergence to equilibrium.
In this paper we consider an M/M/c queue modified to allow both mass arrivals when the system is empty and the workload to be removed. Properties of queues which terminate when the server becomes idle are firstly developed. Recurrence properties, equilibrium distribution, and equilibrium queue-size structure are studied for the case of resurrection and no mass exodus. All of these results are then generalized to allow for the removal of the entire workload. In particular, we obtain the Laplace transformation of the transition probability for the absorptive M/M/c queue.
In this paper we discuss the decay properties of Markov branching processes with disasters, including the decay parameter, invariant measures, and quasistationary distributions. After showing that the corresponding q-matrix Q is always regular and, thus, that the Feller minimal Q-process is honest, we obtain the exact value of the decay parameter λC. We show that the decay parameter can be easily expressed explicitly. We further show that the Markov branching process with disaster is always λC-positive. The invariant vectors, the invariant measures, and the quasidistributions are given explicitly.
Although the exact expressions for the extinction probabilities of the Interacting Branching Collision Processes (IBCP) were very recently given by Chen et al. [4], some of these expressions are very complicated; hence, useful information regarding asymptotic behaviour, for example, is harder to obtain. Also, these exact expressions take very different forms for different cases and thus seem lacking in homogeneity. In this paper, we show that the asymptotic behaviour of these extremely complicated and tangled expressions for extinction probabilities of IBCP follows an elegant and homogenous power law which takes a very simple form. In fact, we are able to show that if the extinction is not certain then the extinction probabilities {an} follow an harmonious and simple asymptotic law of an ∼ kn-αρcn
as n → ∞, where k and α are two constants, ρc is the unique positive zero of the C(s), and C(s) is the generating function of the infinitesimal collision rates. Moreover, the interesting and important quantity α takes a very simple and uniform form which could be interpreted as the ‘spectrum’, ranging from -∞ to +∞, of the interaction between the two components of branching and collision of the IBCP.
The risk processes considered in this paper are generated by an underlying Markov process with a regenerative structure and an independent sequence of independent and identically distributed claims. Between the arrivals of claims the process increases at a rate which is a nonnegative function of the present value of the Markov process. The intensity for a claim to occur is another nonnegative function of the value of the Markov process. The claim arrival times are the regeneration times for the Markov process. Two-sided claims are allowed, but the distribution of the positive claims is assumed to have a Laplace transform that is a rational function. The main results describe the joint Laplace transform of the time at ruin and the deficit at ruin. The method used consists in finding partial eigenfunctions for the generator of the joint process consisting of the Markov process and the accumulated claims process, a joint process which is also Markov. These partial eigenfunctions are then used to find a martingale that directly leads to an expression for the desired Laplace transform. In the final section, three examples are given involving different types of the underlying Markov process.
We consider the uniqueness and extinction properties of the interacting branching collision process (IBCP), which consists of two strongly interacting components: an ordinary Markov branching process and a collision branching process. We establish that there is a unique IBCP, and derive necessary and sufficient conditions for it to be nonexplosive that are easily checked. Explicit expressions are obtained for the extinction probabilities for both regular and irregular cases. The associated expected hitting times are also considered. Examples are provided to illustrate our results.
The conditional least-squares estimators of the variances are studied for a critical branching process with immigration that allows the offspring distributions to have infinite fourth moments. We derive different forms of limiting distributions for these estimators when the offspring distributions have regularly varying tails with index α. In particular, in the case in which 2 < α < 8/3, the normalizing factor of the estimator for the offspring variance is smaller than √n, which is different from that of Winnicki (1991).
In this paper, a stochastic integral of Ornstein–Uhlenbeck type is represented to be the sum of two independent random variables: one has a tempered stable distribution and the other has a compound Poisson distribution. In distribution, the compound Poisson random variable is equal to the sum of a Poisson-distributed number of positive random variables, which are independent and identically distributed and have a common specified density function. Based on the representation of the stochastic integral, we prove that the transition distribution of the tempered stable Ornstein–Uhlenbeck process is self-decomposable and that the transition density is a C∞-function.
In a homogeneous continuous-time Markov chain on a finite state space, two states that jump to every other state with the same rate are called similar. By partitioning states into similarity classes, the algebraic derivation of the transition matrix can be simplified, using hidden holding times and lumped Markov chains. When the rate matrix is reversible, the transition matrix is explicitly related in an intuitive way to that of the lumped chain. The theory provides a unified derivation for a whole range of useful DNA base substitution models, and a number of amino acid substitution models.
The TCP window size process can be modeled as a piecewise-deterministic Markov process that increases linearly and experiences downward jumps at Poisson times. We present a transient analysis of this window size process. Our main result is the Laplace transform of the transient moments. Formulae for the integer and fractional moments are derived, as well as an explicit characterization of the speed of convergence to steady state. Central to our approach are the infinitesimal generator and Dynkin's martingale.
We consider decay properties including the decay parameter, invariant measures, invariant vectors, and quasistationary distributions of a Markovian bulk-arriving queue that stops immediately after hitting the zero state. Investigating such behavior is crucial in realizing the busy period and some other related properties of Markovian bulk-arriving queues. The exact value of the decay parameter λC is obtained and expressed explicitly. The invariant measures, invariant vectors, and quasistationary distributions are then presented. We show that there exists a family of invariant measures indexed by λ ∈ [0, λC]. We then show that, under some conditions, there exists a family of quasistationary distributions, also indexed by λ ∈ [0, λC]. The generating functions of these invariant measures and quasistationary distributions are presented. We further show that a stopped Markovian bulk-arriving queue is always λC-transient and some deep properties are revealed. The clear geometric interpretation of the decay parameter is explained. A few examples are then provided to illustrate the results obtained in this paper.
We consider a birth, death and catastrophe process where the transition rates are allowed to depend on the population size. We obtain an explicit expression for the expected time to extinction, which is valid in all cases where extinction occurs with probability 1.