We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We analyze the process M(t) representing the maximum of the one-dimensional telegraph process X(t) with exponentially distributed upward random times and generally distributed downward random times. The evolution of M(t) is governed by an alternating renewal of two phases: a rising phase R and a constant phase C. During a rising phase, X(t) moves upward, whereas, during a constant phase, it moves upward and downward, continuing to move until it attains the maximal level previously reached. Under some choices of the distribution of the downward times, we are able to determine the distribution of C, which allows us to obtain some bounds for the survival function of M(t). In the particular case of exponential downward random times, we derive an explicit expression for the survival function of M(t). Finally, the moments of the first passage time $\Theta_w$ of the process X(t) through a fixed boundary $w>0$ are analyzed.
Random bridges have gained significant attention in recent years due to their potential applications in various areas, particularly in information-based asset pricing models. This paper aims to explore the potential influence of the pinning point’s distribution on the memorylessness and stochastic dynamics of the bridge process. We introduce Lévy bridges with random length and random pinning points, and analyze their Markov property. Our study demonstrates that the Markov property of Lévy bridges depends on the nature of the distribution of their pinning points. The law of any random variables can be decomposed into singular continuous, discrete, and absolutely continuous parts with respect to the Lebesgue measure (Lebesgue’s decomposition theorem). We show that the Markov property holds when the pinning points’ law does not have an absolutely continuous part. Conversely, the Lévy bridge fails to exhibit Markovian behavior when the pinning point has an absolutely continuous part.
All vital functions of living cells rely on the production of various functional molecules through gene expression. The production periods are burst-like and stochastic due to the discrete nature of biochemical reactions. In certain contexts, the concentrations of RNA or protein require regulation to maintain a fine internal balance within the cell. Here we consider a motif of two types of RNA molecules – mRNA and an antagonistic microRNA – which are encoded by a shared coding sequence and form a feed forward loop (FFL). This control mechanism is shown to be perfectly adapting in the deterministic context. We demonstrate that the adaptation (of the mean value) becomes imperfect if production occurs in random bursts. The FFL nevertheless outperforms the benchmark feedback loop in terms of counterbalancing variations in the signal. Methodologically, we adapt a hybrid stochastic model, which has widely been used to model a single regulatory molecule, to the current case of a motif involving two species; the use of the Laplace transform thereby circumvents the problem of moment closure that arises owing to the mRNA–microRNA interaction. We expect that the approach can be applicable to other systems with nonlinear kinetics.
There has been substantial interest in developing Markov chain Monte Carlo algorithms based on piecewise deterministic Markov processes. However, existing algorithms can only be used if the target distribution of interest is differentiable everywhere. The key to adapting these algorithms so that they can sample from densities with discontinuities is to define appropriate dynamics for the process when it hits a discontinuity. We present a simple condition for the transition of the process at a discontinuity which can be used to extend any existing sampler for smooth densities, and give specific choices for this transition which work with popular algorithms such as the bouncy particle sampler, the coordinate sampler, and the zigzag process. Our theoretical results extend and make rigorous arguments that have been presented previously, for instance constructing samplers for continuous densities restricted to a bounded domain, and we present a version of the zigzag process that can work in such a scenario. Our novel approach to deriving the invariant distribution of a piecewise deterministic Markov process with boundaries may be of independent interest.
Processes of random tessellations of the Euclidean space $\mathbb{R}^d$, $d\geq 1$, are considered that are generated by subsequent division of their cells. Such processes are characterized by the laws of the life times of the cells until their division and by the laws for the random hyperplanes that divide the cells at the end of their life times. The STIT (STable with respect to ITerations) tessellation processes are a reference model. In the present paper a generalization concerning the life time distributions is introduced, a sufficient condition for the existence of such cell division tessellation processes is provided, and a construction is described. In particular, for the case that the random dividing hyperplanes have a Mondrian distribution—which means that all cells of the tessellations are cuboids—it is shown that the intrinsic volumes, except the Euler characteristic, can be used as the parameter for the exponential life time distribution of the cells.
The concurrency of edges, quantified by the number of edges that share a common node at a given time point, may be an important determinant of epidemic processes in temporal networks. We propose theoretically tractable Markovian temporal network models in which each edge flips between the active and inactive states in continuous time. The different models have different amounts of concurrency while we can tune the models to share the same statistics of edge activation and deactivation (and hence the fraction of time for which each edge is active) and the structure of the aggregate (i.e., static) network. We analytically calculate the amount of concurrency of edges sharing a node for each model. We then numerically study effects of concurrency on epidemic spreading in the stochastic susceptible-infectious-susceptible and susceptible-infectious-recovered dynamics on the proposed temporal network models. We find that the concurrency enhances epidemic spreading near the epidemic threshold, while this effect is small in many cases. Furthermore, when the infection rate is substantially larger than the epidemic threshold, the concurrency suppresses epidemic spreading in a majority of cases. In sum, our numerical simulations suggest that the impact of concurrency on enhancing epidemic spreading within our model is consistently present near the epidemic threshold but modest. The proposed temporal network models are expected to be useful for investigating effects of concurrency on various collective dynamics on networks including both infectious and other dynamics.
We analyze the long-term stability of a stochastic model designed to illustrate the adaptation of a population to variation in its environment. A piecewise deterministic process modeling adaptation is coupled to a Feller logistic diffusion modeling population size. As the individual features in the population become further away from the optimal ones, the growth rate declines, making population extinction more likely. Assuming that the environment changes deterministically and steadily in a constant direction, we obtain the existence and uniqueness of the quasi-stationary distribution, the associated survival capacity, and the Q-process. Our approach also provides several exponential convergence results (in total variation for the measures). From this synthetic information, we can characterize the efficiency of internal adaptation (i.e. population turnover from mutant invasions). When the latter is lacking, there is still stability, but because of the high level of population extinction. Therefore, any characterization of internal adaptation should be based on specific features of this quasi-ergodic regime rather than the mere existence of the regime itself.
We feature results on global survival and extinction of an infection in a multi-layer network of mobile agents. Expanding on a model first presented in Cali et al. (2022), we consider an urban environment, represented by line segments in the plane, in which agents move according to a random waypoint model based on a Poisson point process. Whenever two agents are at sufficiently close proximity for a sufficiently long time the infection can be transmitted and then propagates into the system according to the same rule starting from a typical device. Inspired by wireless network architectures, the network is additionally equipped with a second class of agents able to transmit a patch to neighboring infected agents that in turn can further distribute the patch, leading to chase–escape dynamics. We give conditions for parameter configurations that guarantee existence and absence of global survival as well as an in-and-out of the survival regime, depending on the speed of the devices. We also provide complementary results for the setting in which the chase–escape dynamics is defined as an independent process on the connectivity graph. The proofs mainly rest on percolation arguments via discretization and multiscale analysis.
We consider a stochastic SIR (susceptible $\rightarrow$ infective $\rightarrow$ removed) model in which the infectious periods are modulated by a collection of independent and identically distributed Feller processes. Each infected individual is associated with one of these processes, the trajectories of which determine the duration of his infectious period, his contamination rate, and his type of removal (e.g. death or immunization). We use a martingale approach to derive the distribution of the final epidemic size and severity for this model and provide some general examples. Next, we focus on a single infected individual facing a given number of susceptibles, and we determine the distribution of his outcome (number of contaminations, severity, type of removal). Using a discrete-time formulation of the model, we show that this distribution also provides us with an alternative, more stable method to compute the final epidemic outcome distribution.
Consider a two-type Moran population of size N with selection and mutation, where the selective advantage of the fit individuals is amplified at extreme environmental conditions. Assume selection and mutation are weak with respect to N, and extreme environmental conditions rarely occur. We show that, as $N\to\infty$, the type frequency process with time sped up by N converges to the solution to a Wright–Fisher-type SDE with a jump term modeling the effect of the environment. We use an extension of the ancestral selection graph (ASG) to describe the genealogical picture of the model. Next, we show that the type frequency process and the line-counting process of a pruned version of the ASG satisfy a moment duality. This relation yields a characterization of the asymptotic type distribution. We characterize the ancestral type distribution using an alternative pruning of the ASG. Most of our results are stated in annealed and quenched form.
This paper deals with ergodic theorems for particular time-inhomogeneous Markov processes, whose time-inhomogeneity is asymptotically periodic. Under a Lyapunov/minorization condition, it is shown that, for any measurable bounded function f, the time average
$\frac{1}{t} \int_0^t f(X_s)ds$
converges in
$\mathbb{L}^2$
towards a limiting distribution, starting from any initial distribution for the process
$(X_t)_{t \geq 0}$
. This convergence can be improved to an almost sure convergence under an additional assumption on the initial measure. This result is then applied to show the existence of a quasi-ergodic distribution for processes absorbed by an asymptotically periodic moving boundary, satisfying a conditional Doeblin condition.
Under the assumption that sequences of graphs equipped with resistances, associated measures, walks and local times converge in a suitable Gromov-Hausdorff topology, we establish asymptotic bounds on the distribution of the
$\varepsilon$
-blanket times of the random walks in the sequence. The precise nature of these bounds ensures convergence of the
$\varepsilon$
-blanket times of the random walks if the
$\varepsilon$
-blanket time of the limiting diffusion is continuous at
$\varepsilon$
with probability 1. This result enables us to prove annealed convergence in various examples of critical random graphs, including critical Galton-Watson trees and the Erdős-Rényi random graph in the critical window. We highlight that proving continuity of the
$\varepsilon$
-blanket time of the limiting diffusion relies on the scale invariance of a finite measure that gives rise to realizations of the limiting compact random metric space, and therefore we expect our results to hold for other examples of random graphs with a similar scale invariance property.
We establish exponential ergodicity for a class of Markov processes with interactions, including two-factor type processes and Gruschin type processes. The proof is elementary and direct via the Markov coupling technique.
We consider a risk model with a counting process whose intensity is a Markovian shot-noise process, to resolve one of the disadvantages of the Cramér–Lundberg model, namely the constant intensity of the Poisson process. Due to this structure, we can apply the theory of piecewise deterministic Markov processes on a multivariate process containing the intensity and the reserve process, which allows us to identify a family of martingales. Eventually, we use change of measure techniques to derive an upper bound for the ruin probability in this model. Exploiting a recurrent structure of the shot-noise process, even the asymptotic behaviour of the ruin probability can be determined.
Matryoshka dolls, the traditional Russian nesting figurines, are known worldwide for each doll’s encapsulation of a sequence of smaller dolls. In this paper, we exploit the structure of a new sequence of nested matrices we call matryoshkan matrices in order to compute the moments of the one-dimensional polynomial processes, a large class of Markov processes. We characterize the salient properties of matryoshkan matrices that allow us to compute these moments in closed form at a specific time without computing the entire path of the process. This simplifies the computation of the polynomial process moments significantly. Through our method, we derive explicit expressions for both transient and steady-state moments of this class of Markov processes. We demonstrate the applicability of this method through explicit examples such as shot noise processes, growth–collapse processes, ephemerally self-exciting processes, and affine stochastic differential equations from the finance literature. We also show that we can derive explicit expressions for the self-exciting Hawkes process, for which finding closed-form moment expressions has been an open problem since their introduction in 1971. In general, our techniques can be used for any Markov process for which the infinitesimal generator of an arbitrary polynomial is itself a polynomial of equal or lower order.
We prove polynomial ergodicity for the one-dimensional Zig-Zag process on heavy-tailed targets and identify the exact order of polynomial convergence of the process when targeting Student distributions.
Simulated tempering is a popular method of allowing Markov chain Monte Carlo algorithms to move between modes of a multimodal target density
$\pi$
. Tawn, Moores and Roberts (2021) introduces the Annealed Leap-Point Sampler (ALPS) to allow for rapid movement between modes. In this paper we prove that, under appropriate assumptions, a suitably scaled version of the ALPS algorithm converges weakly to skew Brownian motion. Our results show that, under appropriate assumptions, the ALPS algorithm mixes in time
$O(d [\log d]^2)$
or O(d), depending on which version is used.
In this article we consider a Monte-Carlo-based method to filter partially observed diffusions observed at regular and discrete times. Given access only to Euler discretizations of the diffusion process, we present a new procedure which can return online estimates of the filtering distribution with no time-discretization bias and finite variance. Our approach is based upon a novel double application of the randomization methods of Rhee and Glynn (Operat. Res.63, 2015) along with the multilevel particle filter (MLPF) approach of Jasra et al. (SIAM J. Numer. Anal.55, 2017). A numerical comparison of our new approach with the MLPF, on a single processor, shows that similar errors are possible for a mild increase in computational cost. However, the new method scales strongly to arbitrarily many processors.
We apply general moment identities for Poisson stochastic integrals with random integrands to the computation of the moments of Markovian growth–collapse processes. This extends existing formulas for mean and variance available in the literature to closed-form moment expressions of all orders. In comparison with other methods based on differential equations, our approach yields explicit summations in terms of the time parameter. We also treat the case of the associated embedded chain, and provide recursive codes in Maple and Mathematica for the computation of moments and cumulants of any order with arbitrary cut-off moment sequences and jump size functions.
This paper is devoted to the study of regime-switching jump diffusion processes with countable regimes. It aims to establish Foster–Lyapunov-type criteria for exponential ergodicity of such processes. After recalling results concerning the petiteness of compact sets, this paper presents sufficient conditions for the existence of a Foster–Lyapunov function; this, in turn, helps to establish sufficient conditions for the desired exponential ergodicity for regime-switching jump diffusion processes. Finally, an application to feedback control problems is presented.