To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Any margin of the multinomial distribution is multinomially distributed. Retaining this closure property, a family of generalized multinomial distributions is proposed. This family is characterized within multiplicative probability measures, using the Bell polynomial. The retained closure property simplifies marginal properties such as moments. The family can be obtained by conditioning independent infinitely divisible distributions on the total and also by mixing the multinomial distribution with the normalized infinitely divisible distribution. The closure property justifies a stochastic process of the family by Kolmogorov’s extension theorem. Over time, Gibbs partitions of a positive integer appear as the limiting distributions of the family.
We show that $\alpha $-stable Lévy motions can be simulated by any ergodic and aperiodic probability-preserving transformation. Namely we show that: for $0<\alpha <1$ and every $\alpha $-stable Lévy motion ${\mathbb {W}}$, there exists a function f whose partial sum process converges in distribution to ${\mathbb {W}}$; for $1\leq \alpha <2$ and every symmetric $\alpha $-stable Lévy motion, there exists a function f whose partial sum process converges in distribution to ${\mathbb {W}}$; for $1< \alpha <2$ and every $-1\leq \beta \leq 1$ there exists a function f whose associated time series is in the classical domain of attraction of an $S_\alpha (\ln (2), \beta ,0)$ random variable.
Motivated by the investigation of probability distributions with finite variance but heavy tails, we study infinitely divisible laws whose Lévy measure is characterized by a radial component of geometric (tempered) stable type. We closely investigate the univariate case: characteristic exponents and cumulants are calculated, as well as spectral densities; absolute continuity relations are shown, and short- and long-time scaling limits of the associated Lévy processes analyzed. Finally, we derive some properties of the involved probability density functions.
Random bridges have gained significant attention in recent years due to their potential applications in various areas, particularly in information-based asset pricing models. This paper aims to explore the potential influence of the pinning point’s distribution on the memorylessness and stochastic dynamics of the bridge process. We introduce Lévy bridges with random length and random pinning points, and analyze their Markov property. Our study demonstrates that the Markov property of Lévy bridges depends on the nature of the distribution of their pinning points. The law of any random variables can be decomposed into singular continuous, discrete, and absolutely continuous parts with respect to the Lebesgue measure (Lebesgue’s decomposition theorem). We show that the Markov property holds when the pinning points’ law does not have an absolutely continuous part. Conversely, the Lévy bridge fails to exhibit Markovian behavior when the pinning point has an absolutely continuous part.
We propose a monotone approximation scheme for a class of fully nonlinear degenerate partial integro-differential equations which characterize nonlinear $\alpha$-stable Lévy processes under a sublinear expectation space with $\alpha\in(1,2)$. We further establish the error bounds for the monotone approximation scheme. This in turn yields an explicit Berry–Esseen bound and convergence rate for the $\alpha$-stable central limit theorem under sublinear expectation.
Qu, Dassios, and Zhao (2021) suggested an exact simulation method for tempered stable Ornstein–Uhlenbeck processes, but their algorithms contain some errors. This short note aims to correct their algorithms and conduct some numerical experiments.
The switch process alternates independently between 1 and $-1$, with the first switch to 1 occurring at the origin. The expected value function of this process is defined uniquely by the distribution of switching times. The relation between the two is implicitly described through the Laplace transform, which is difficult to use for determining if a given function is the expected value function of some switch process. We derive an explicit relation under the assumption of monotonicity of the expected value function. It is shown that geometric divisible switching time distributions correspond to a non-negative decreasing expected value function. Moreover, an explicit relation between the expected value of a switch process and the autocovariance function of the switch process stationary counterpart is obtained, leading to a new interpretation of the classical Pólya criterion for positive-definiteness.
We study the distribution of the consensus formed by a broadcast-based consensus algorithm for cases in which the initial opinions of agents are random variables. We first derive two fundamental equations for the time evolution of the average opinion of agents. Using the derived equations, we then investigate the distribution of the consensus in the limit in which agents do not have any mutual trust, and show that the consensus without mutual trust among agents is in sharp contrast to the consensus with complete mutual trust in the statistical properties if the initial opinion of each agent is integrable. Next, we provide the formulation necessary to mathematically discuss the consensus in the limit in which the number of agents tends to infinity, and derive several results, including a central limit theorem concerning the consensus in this limit. Finally, we study the distribution of the consensus when the initial opinions of agents follow a stable distribution, and show that the consensus also follows a stable distribution in the limit in which the number of agents tends to infinity.
We study large-deviation probabilities of Telecom processes appearing as limits in a critical regime of the infinite-source Poisson model elaborated by I. Kaj and M. Taqqu. We examine three different regimes of large deviations (LD) depending on the deviation level. A Telecom process $(Y_t)_{t \ge 0}$ scales as $t^{1/\gamma}$, where t denotes time and $\gamma\in(1,2)$ is the key parameter of Y. We must distinguish moderate LD ${\mathbb P}(Y_t\ge y_t)$ with $t^{1/\gamma} \ll y_t \ll t$, intermediate LD with $ y_t \approx t$, and ultralarge LD with $ y_t \gg t$. The results we obtain essentially depend on another parameter of Y, namely the resource distribution. We solve completely the cases of moderate and intermediate LD (the latter being the most technical one), whereas the ultralarge deviation asymptotics is found for the case of regularly varying distribution tails. In all the cases considered, the large-deviation level is essentially reached by the minimal necessary number of ‘service processes’.
We propose non-asymptotic controls of the cumulative distribution function $\mathbb{P}(|X_{t}|\ge \varepsilon)$, for any $t>0$, $\varepsilon>0$ and any Lévy process X such that its Lévy density is bounded from above by the density of an $\alpha$-stable-type Lévy process in a neighborhood of the origin.
There are two types of tempered stable (TS) based Ornstein–Uhlenbeck (OU) processes: (i) the OU-TS process, the OU process driven by a TS subordinator, and (ii) the TS-OU process, the OU process with TS marginal law. They have various applications in financial engineering and econometrics. In the literature, only the second type under the stationary assumption has an exact simulation algorithm. In this paper we develop a unified approach to exactly simulate both types without the stationary assumption. It is mainly based on the distributional decomposition of stochastic processes with the aid of an acceptance–rejection scheme. As the inverse Gaussian distribution is an important special case of TS distribution, we also provide tailored algorithms for the corresponding OU processes. Numerical experiments and tests are reported to demonstrate the accuracy and effectiveness of our algorithms, and some further extensions are also discussed.
We consider a space-time random field on ${{\mathbb{R}^d} \times {\mathbb{R}}}$ given as an integral of a kernel function with respect to a Lévy basis with a convolution equivalent Lévy measure. The field obeys causality in time and is thereby not continuous along the time axis. For a large class of such random fields we study the tail behaviour of certain functionals of the field. It turns out that the tail is asymptotically equivalent to the right tail of the underlying Lévy measure. Particular examples are the asymptotic probability that there is a time point and a rotation of a spatial object with fixed radius, in which the field exceeds the level x, and that there is a time interval and a rotation of a spatial object with fixed radius, in which the average of the field exceeds the level x.
We characterize the second order subexponentiality of an infinitely divisible distribution on the real line under an exponential moment assumption. We investigate the asymptotic behaviour of the difference between the tails of an infinitely divisible distribution and its Lévy measure. Moreover, we study the second order asymptotic behaviour of the tail of the $t$th convolution power of an infinitely divisible distribution. The density version for a self-decomposable distribution on the real line without an exponential moment assumption is also given. Finally, the regularly varying case for a self-decomposable distribution on the half line is discussed.
In a recent article, Döring et al. (2018) conditioned a stable process with two-sided jumps to avoid an interval. As usual, the strategy was to find an invariant function for the process killed on entering the interval and to show that the corresponding h-transformed process is indeed the process conditioned to avoid an interval in a meaningful way. In the present article we consider the case of a completely asymmetric stable process. It turns out that the invariant function found by Döring et al. does not exist or is not invariant, but nonetheless we will characterise the conditioned process as a Markov process.
An infinite convergent sum of independent and identically distributed random variables discounted by a multiplicative random walk is called perpetuity, because of a possible actuarial application. We provide three disjoint groups of sufficient conditions which ensure that the right tail of a perpetuity ℙ{X > x} is asymptotic to axce-bx as x → ∞ for some a, b > 0, and c ∈ ℝ. Our results complement those of Denisov and Zwart (2007). As an auxiliary tool we provide criteria for the finiteness of the one-sided exponential moments of perpetuities. We give several examples in which the distributions of perpetuities are explicitly identified.
We construct random fields with Pólya-type autocorrelation function and dampened Pólya cross-correlation function. The marginal distribution of the random fields may be taken as any infinitely divisible distribution with finite variance, and the random fields are fully characterized in terms of their joint characteristic function. This makes available a new class of non-Gaussian random fields with flexible correlation structure for use in modeling and estimation.
We study a type of nonnormal small jump approximation of infinitely divisible distributions. By incorporating compound Poisson, gamma, and normal distributions, the approximation has a higher order of cumulant matching than its normal counterpart, and, hence, in many cases a higher rate of approximation error decay as the cutoff for the jump size tends to 0. The parameters of the approximation are easy to fix, and its random sampling has the same order of computational complexity as the normal approximation. An error bound of the approximation in terms of the total variation distance is derived. Simulations empirically show that the nonnormal approximation can have a significantly smaller error than its normal counterpart.
We extend the class of tempered stable distributions, which were first introduced in Rosiński (2007). Our new class allows for more structure and more variety of the tail behaviors. We discuss various subclasses and the relations between them. To characterize the possible tails, we give detailed results about finiteness of various moments. We also give necessary and sufficient conditions for the tails to be regularly varying. This last part allows us to characterize the domain of attraction to which a particular tempered stable distribution belongs.
Nonnegative infinitely divisible (i.d.) random variables form an important class of random variables. However, when this type of random variable is specified via Lévy densities that have infinite integrals on (0, ∞), except for some special cases, exact sampling is unknown. We present a method that can sample a rather wide range of such i.d. random variables. A basic result is that, for any nonnegative i.d. random variable X with its Lévy density explicitly specified, if its distribution conditional on X ≤ r can be sampled exactly, where r > 0 is any fixed number, then X can be sampled exactly using rejection sampling, without knowing the explicit expression of the density of X. We show that variations of the result can be used to sample various nonnegative i.d. random variables.
We study a family of distributions that satisfy the stability-under-addition property, provided that the number ν of random variables in a sum is also a random variable. We call the corresponding property ν-stability and investigate the situation when the semigroup generated by the generating function of ν is commutative. Using results from the theory of iterations of analytic functions, we describe ν-stable distributions generated by summations with rational generating functions. A new case in this class of distributions arises when generating functions are linked with Chebyshev polynomials. The analogue of normal distribution corresponds to the hyperbolic secant distribution.