We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we give the generic classification of the singularities of 3-parameter line congruences in $\mathbb {R}^{4}$. We also classify the generic singularities of normal and Blaschke (affine) normal congruences.
We construct a Legendrian version of envelope theory. A tangential family is a one-parameter family of rays emanating tangentially from a regular plane curve. The Legendrian graph of the family is the union of the Legendrian lifts of the family curves in the projectivized cotangent bundle $PT^*\mathbb{R}^2$. We study the singularities of Legendrian graphs and their stability under small tangential deformations. We also find normal forms of their projections into the plane. This allows us to interpret the beak-to-beak perestroika as the apparent contour of a deformation of the double Whitney umbrella singularity $A_1^\pm$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.