We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider random dynamical systems with randomly chosen jumps on infinite-dimensional spaces. The choice of deterministic dynamical systems and jumps depends on a position. The system generalizes dynamical systems corresponding to learning systems, Poisson driven stochastic differential equations, iterated function system with infinite family of transformations and random evolutions. We will show that distributions which describe the dynamics of this system converge to an invariant distribution. We use recent results concerning asymptotic stability of Markov operators on infinite-dimensional spaces obtained by T. Szarek.
Soit ${{H}_{0}}\,=\,\frac{{{x}^{2}}+{{y}^{2}}}{2}$ un hamiltonien isochrone du plan ${{\mathbb{R}}^{2}}$. On met en évidence une classe d’hamiltoniens isochrones qui sont des perturbations polynomiales de ${{H}_{0}}$. On obtient alors une condition nécessaire d’isochronisme, et un critère de choix pour les hamiltoniens isochrones. On voit ce résultat comme étant une généralisation du caractère isochrone des perturbations hamiltoniennes homogènes considérées dans $\left[ \text{L} \right],\,\left[ \text{P} \right],\,\left[ \text{S} \right]$.
We transpose the ordinary differential equation method (used for decreasing stepsize stochastic algorithms) to a dynamical system method to study dynamical systems disturbed by a noise decreasing to zero. We prove that such an algorithm does not fall into a regular trap if the noise is exciting in an unstable direction.
We investigate the asymptotic sample path behaviour of a randomly perturbed discrete-time dynamical system. We consider the case where the trajectories of the non-perturbed dynamical system are attracted by a finite number of limit sets and characterize a case where this property remains valid for the perturbed dynamical system when the perturbation converges to zero. For this purpose, no further assumptions on the perturbation are needed and our main condition applies to the limit sets of the non-perturbed dynamical system. When the limit sets reduce to limit points we show that this main condition is more general than the usual assumption of the existence of a Lyapunov function for the non-perturbed dynamical system. An application to an epidemic model is given to illustrate our results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.