Let  
 $X:\,{{\mathbb{R}}^{2}}\to \,{{\mathbb{R}}^{2}}$  be a  
 ${{C}^{1}}$  map. Denote by  
 $\text{Spec}(X)$  the set of (complex) eigenvalues of  
 $\text{D}{{\text{X}}_{p}}$  when  
 $p$  varies in  
 ${{\mathbb{R}}^{2}}$ . If there exists  
 $\in \,>\,0$  such that  
 $\text{Spec(}X)\,\bigcap \,(-\in ,\,\in )\,=\,\varnothing $ , then  
 $X$  is injective. Some applications of this result to the real Keller Jacobian conjecture are discussed.