We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish a one-to-one correspondence between, on the one hand, Finsler structures on the
$2$
-sphere with constant curvature
$1$
and all geodesics closed, and on the other hand, Weyl connections on certain spindle orbifolds whose symmetric Ricci curvature is positive definite and whose geodesics are all closed. As an application of our duality result, we show that suitable holomorphic deformations of the Veronese embedding
$\mathbb {CP}(a_1,a_2)\rightarrow \mathbb {CP}(a_1,(a_1+a_2)/2,a_2)$
of weighted projective spaces provide examples of Finsler
$2$
-spheres of constant curvature whose geodesics are all closed.
Let f : N ≡ P be a holomorphic map between n-dimensional complex manifolds which has only fold singularities. Such a map is called a holomorphic fold map. In the complex 2-jet space J2(n,n;C), let Ω10 denote the space consisting of all 2-jets of regular map germs and fold map germs. In this paper we prove that Ω10 is homotopy equivalent to SU(n + 1). By using this result we prove that if the tangent bundles TN and TP are equipped with SU(n)-structures in addition, then a holomorphic fold map f canonically determines the homotopy class of an SU(n + 1)-bundle map of TN ⊕ θN to TP⊕ θP, where θN and θP are the trivial line bundles.
Let M be a circular CR manifold and let N be a rigid CR manifold in some complex vector spaces. The problem of the existence of local CR mappings from M into N is considered. Conditions are given which ensure that the space of such CR mappings depends on a finite number of parameters. The idea of the proof of the main result relies on a Bishop type equation for CR mappings. Roughly speaking, we look for CR mappings from M into N in the form F = (ƒ,g), we assume that g is given, then we find ƒ in terms of g and some parameters, and finally we look for conditions on g. It works independently of assumptions on the Levi forms of M and N, and there is also some freedom on the codimension of the manifolds.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.