To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study necessary and sufficient conditions for a 4-dimensional Lefschetz fibration over the 2-disk to admit a ${\text{Pin}}^{\pm}$-structure, extending the work of A. Stipsicz in the orientable setting. As a corollary, we get existence results of ${\text{Pin}}^{+}$ and ${\text{Pin}}^-$-structures on closed non-orientable 4-manifolds and on Lefschetz fibrations over the 2-sphere. In particular, we show via three explicit examples how to read-off ${\text{Pin}}^{\pm}$-structures from the Kirby diagram of a 4-manifold. We also provide a proof of the well-known fact that any closed 3-manifold M admits a ${\text{Pin}}^-$-structure and we find a criterion to check whether or not it admits a ${\text{Pin}}^+$-structure in terms of a handlebody decomposition. We conclude the paper with a characterization of ${\text{Pin}}^+$-structures on vector bundles.
For a manifold with boundary, the restriction of Chern's transgression form of the Euler curvature form over the boundary is closed. Its cohomology class is called the secondary Chern– Euler class and was used by Sha to formulate a relative Poincaré–Hopf theorem under the condition that the metric on the manifold is locally product near the boundary. We show that the secondary Chern–Euler form is exact away from the outward and inward unit normal vectors of the boundary by explicitly constructing a transgression form. Using Stokes’ theorem, this evaluates the boundary term in Sha's relative Poincaré–Hopf theorem in terms of more classical indices of the tangential projection of a vector field. This evaluation in particular shows that Sha's relative Poincaré–Hopf theorem is equivalent to the more classical law of vector fields.
Let d be the degree of an algebraic one-dimensional foliation $\mathcal F$ on the complex projective space ${\mathbb P}_n$ (i.e. the degree of the variety of tangencies of the foliation with a generic hyperplane). Let $\Gamma$ be an algebraic solution of degree $\delta$, and geometrical genus g. We prove, in particular, the inequality $(d-1)\delta+2-2g\geq {\mathcal B}(\Gamma)$, where ${\mathcal B}(\Gamma)$ denotes the total number of locally irreducible branches through singular points of $\Gamma$ when $\Gamma$ has singularities, and ${\mathcal B}(\Gamma)=1$ (instead of 0) when $\Gamma$ is smooth. Equivalently, when $\Gamma=\bigcap_{\lambda=1}^{n-1} S_\lambda$ is the complete intersection of n - 1 algebraic hypersurfaces $S_\lambda$, we get $(d+n-\sum_{\lambda=1}^{n-1}\delta_\lambda)\delta \geq {\mathcal B}(\Gamma)-{\mathcal E}(\Gamma)$, where $\delta_\lambda$ denotes the degree of $S_\lambda$ and ${\mathcal E}(\Gamma)=2-2g+(\sum_\lambda\delta_\lambda-(n+1))\delta$ the correction term in the genus formula. These results are also refined when $\Gamma$ is reducible.
an index of a collection of 1-forms on a complex isolated complete intersection singularity corresponding to a chern number is defined and – in the case when the 1-forms are complex analytic – expressed as the dimension of a certain algebra.
Let X be a compact connected Riemann surface and ξ a square root of the holomorphic contangent bundle of X. Sending any line bundle L over X of order two to the image of dim H0(X, ξ ⊗ L) − dim H0(X, ξ) in Z/2Z defines a quadratic form on the space of all order two line bundles. We give a topological interpretation of this quadratic form in terms of index of vector fields on X.
In the first paper with the same title the authors were able to determine all partially oriented flag manifolds that are stably parallelizable or parallelizable, apart from four infinite families that were undecided. Here, using more delicate techniques (mainly K-theory),we settle these previously undecided families and show that none of the manifolds in them is stably parallelizable, apart from one 30-dimensional manifold which still remains undecided.