We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $X^{n}$ be an oriented closed generalized $n$-manifold, $n\ge 5$. In our recent paper (Proc. Edinb. Math. Soc. (2) 63 (2020), no. 2, 597–607), we have constructed a map $t:\mathcal {N}(X^{n}) \to H^{st}_{n} ( X^{n}; \mathbb{L}^{+})$ which extends the normal invariant map for the case when $X^{n}$ is a topological $n$-manifold. Here, $\mathcal {N}(X^{n})$ denotes the set of all normal bordism classes of degree one normal maps $(f,\,b): M^{n} \to X^{n},$ and $H^{st}_{*} ( X^{n}; \mathbb{E})$ denotes the Steenrod homology of the spectrum $\mathbb{E}$. An important non-trivial question arose whether the map $t$ is bijective (note that this holds in the case when $X^{n}$ is a topological $n$-manifold). It is the purpose of this paper to prove that the answer to this question is affirmative.
The aim of this paper is to show the importance of the Steenrod construction of homology theories for the disassembly process in surgery on a generalized n-manifold Xn, in order to produce an element of generalized homology theory, which is basic for calculations. In particular, we show how to construct an element of the nth Steenrod homology group $H^{st}_{n} (X^{n}, \mathbb {L}^+)$, where 𝕃+ is the connected covering spectrum of the periodic surgery spectrum 𝕃, avoiding the use of the geometric splitting procedure, the use of which is standard in surgery on topological manifolds.
We formulate a theory of pointed manifolds, accommodating both embeddings and Pontryagin–Thom collapse maps, so as to present a common generalization of Poincaré duality in topology and Koszul duality in ${\mathcal{E}}_{n}$-algebra.
We establish class field theory for three-dimensional manifolds and knots. For this purpose, we formulate analogues of the multiplicative group, the idèle class group, and ray class groups in a cocycle-theoretic way. Following the arguments in abstract class field theory, we construct reciprocity maps and verify the existence theorems.
In this note we show that the crucial orientation condition forcommutative geometries fails for the natural commutative spectral triple of an orbifold M/G.
This paper defines three simplicial approximation properties for maps of 2-cells and 2-spheres into spaces, each providing homotopical tameness conditions on the approximating images. These are the general position properties used in the two main results. The first shows that a resolvable generalized 3-manifold is a genuine 3- manifold if and only if it has the weakest of these approximation properties as well as a mild 3-dimensional disjoint disks condition known as the Light Map Separation Property. The second shows a resolvable generalized 3-manifold to be a 3-manifold if and only if it satisfies the strongest of these approximation properties.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.