We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study connections between topological games such as Rothberger, Menger, and compact-open games, and we relate these games to properties involving covers by ${{G}_{\delta }}$ subsets. The results include the following: (1) If TWO has a winning strategy in theMenger game on a regular space $X$, then $X$ is an Alster space. (2) If TWO has a winning strategy in the Rothberger game on a topological space $X$, then the ${{G}_{\delta }}$-topology on $X$ is Lindelöf. (3) The Menger game and the compact-open game are (consistently) not dual.
We show that there exists a locally compact separable metrizable space $L$ such that $C_{0}(L)$, the Banach space of all continuous complex-valued functions vanishing at infinity with the supremum norm, is almost transitive. Due to a result of Greim and Rajagopalan [3], this implies the existence of a locally compact Hausdorff space $\tilde L$ such that $C_{0}(\tilde L)$ is transitive, disproving a conjecture of Wood [9]. We totally owe our construction to a topological characterization due to Sánches [8].
It is proved that for every Hausdorff space ℝ and for every Hausdorff (regular or Moore) space X, there exists a Hausdorff (regular or Moore, respectively) space S containing X as a closed subspace and having the following properties:
la) Every continuous map of S into ℝ is constant.
b) For every point x of S and every open neighbourhood U of x there exists an open neighbourhood V of x, V ⊆ U such that every continuous map of V into ℝ is constant.
2) Every continuous map f of S into S (f ≠ identity on S) is constant.
In addition it is proved that the Fomin extension of the Moore space S has these properties.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.