We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We categorify the inclusion–exclusion principle for partially ordered topological spaces and schemes to a filtration on the derived category of sheaves. As a consequence, we obtain functorial spectral sequences that generalize the two spectral sequences of a stratified space and certain Vassiliev-type spectral sequences; we also obtain Euler characteristic analogs in the Grothendieck ring of varieties. As an application, we give an algebro-geometric proof of Vakil and Wood's homological stability conjecture for the space of smooth hypersurface sections of a smooth projective variety. In characteristic zero this conjecture was previously established by Aumonier via topological methods.
In this paper, we give an axiomatization of the ordinal number system, in the style of Dedekind’s axiomatization of the natural number system. The latter is based on a structure
$(N,0,s)$
consisting of a set N, a distinguished element
$0\in N$
and a function
$s\colon N\to N$
. The structure in our axiomatization is a triple
$(O,L,s)$
, where O is a class, L is a class function defined on all s-closed ‘subsets’ of O, and s is a class function
$s\colon O\to O$
. In fact, we develop the theory relative to a Grothendieck-style universe (minus the power set axiom), as a way of bringing the natural and the ordinal cases under one framework. We also establish a universal property for the ordinal number system, analogous to the well-known universal property for the natural number system.
We prove that the modal logic of a crowded locally compact generalized ordered space is
$\textsf {S4}$
. This provides a version of the McKinsey–Tarski theorem for generalized ordered spaces. We then utilize this theorem to axiomatize the modal logic of an arbitrary locally compact generalized ordered space.
Positive modal algebras are the $$\left\langle { \wedge , \vee ,\diamondsuit ,\square,0,1} \right\rangle $$-subreducts of modal algebras. We prove that the variety of positive S4-algebras is not locally finite. On the other hand, the free one-generated positive S4-algebra is shown to be finite. Moreover, we describe the bottom part of the lattice of varieties of positive S4-algebras. Building on this, we characterize (passively, hereditarily) structurally complete varieties of positive K4-algebras.
We prove that a connected, countable dense homogeneous space is $n$-homogeneous for every n, and strongly 2-homogeneous provided it is locally connected. We also present an example of a connected and countable dense homogeneous space which is not strongly 2-homogeneous. This answers in the negative Problem 136 ofWatson in the Open Problems in Topology Book.
A continuumis said to be Suslinian if it does not contain uncountably many mutually exclusive non-degenerate subcontinua. Fitzpatrick and Lelek have shown that a metric Suslinian continuum $X$ has the property that the set of points at which $X$ is connected im kleinen is dense in $X$. We extend their result to Hausdorff Suslinian continua and obtain a number of corollaries. In particular, we prove that a homogeneous, non-degenerate, Suslinian continuum is a simple closed curve and that each separable, non-degenerate, homogenous, Suslinian continuum is metrizable.
For any generalized ordered space X with the underlying linearly ordered topological space Xu, let X* be the minimal closed linearly ordered extension of X and be the minimal dense linearly ordered extension of X. The following results are obtained.
(1) The projection mapping π:X*→X, π(〈x,i〉)=x, is closed.
(2) The projection mapping , ϕ(〈x,i〉)=x, is closed.
(3)X* is a monotone D-space if and only if X is a monotone D-space.
(4) is a monotone D-space if and only if Xu is a monotone D-space.
(5) For the Michael line M, is a paracompact p-space, but not continuously Urysohn.
Let $H$ be a not necessarily separable Hilbert space, and let $\mathcal{B}(H)$ denote the space of all bounded linear operators on $H$. It is proved that a commutative lattice $\mathcal{D}$ of self-adjoint projections in $H$ that contains $0$ and $I$ is spatially complete if and only if it is a closed subset of $\mathcal{B}(H)$ in the strong operator topology. Some related results are obtained concerning commutative lattice-ordered cones of self-adjoint operators that contain $\mathcal{D}$.
It is known that every frame is isomorphic to the generalized Gleason algebra of an essentially unique bi-Stonian space (X, σ, τ) in which σ is T0. Let (X, σ, τ) be as above. The specialization order ≤σ, of (X, σ) is τ × τ-closed. By Nachbin's Theorem there is exactly one quasi-uniformity U on X such that ∩U = ≤σ and J(U*) = τ. This quasi-uniformity is compatible with σ and is coarser than the Pervin quasi-uniformity U of (X, σ). Consequently, τ is coarser than the Skula topology of σ and coincides with the Skula topology if and only if U = P.
Let X be a Hausdorff space which is the continuous image of an ordered continuum. We prove that every irreducible separator of X is metrizable. This is a far reaching extension of the 1967 theorem of S. Mardešić which asserts that X has a basis of open sets with metrizable boundaries. Our first result is then used to show that, in particular, if Y is an hereditarily locally connected continuum, then for subsets of Y quasi-components coincide with components, and that the boundary of each connected open subset of Y is accessible by ordered continua. These results answer open problems in the literature due to the fourth and third authors, respectively.
We answer a 1975 question of G R Gordh by showing that if X is a homogeneous compactum which is the continuous image of a compact ordered space then at least one of the following holds
(I) X is metrizable, (II) dim X = 0 or (III) X is a union of finitely many pairwise disjoint generalized simple closed curves.
We begin to examine the structure of homogeneous 0-dimensional spaces which are continuous images of ordered compacta.
The paper discusses some consequences of weak monotonicity for connected maps in relation to essential connectedness of a space. The first main result gives conditions under which the image by a connected map of an essentially connected space is essentially connected. The second is that, for a connected mapping of a connected, 1 .c. space to a WLOTS-wise and essentially connected space, w-monotonicity implies monotonicity. The remainder of the paper discusses continuity properties of connected, w-monotone mappings with WLOTS-wise and essentially connected range.
Compactifications are constructed for convergence ordered spaces and topological ordered spaces with extension properties that resemble those of the Stone-Čech compactification.
A partially ordered space is an ordered pair (X, ≤) where X is a compact metric space and ≤ is a partial ordering on X such that ≤ is a closed subset of the Cartesian product X×X. ≤ is said to be a closed partial order on X.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.