We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the quasi-ergodicity of compact strong Feller semigroups $U_t$, $t> 0$, on $L^2(M,\mu )$; we assume that M is a locally compact Polish space equipped with a locally finite Borel measue $\mu $. The operators $U_t$ are ultracontractive and positivity preserving, but not necessarily self-adjoint or normal. We are mainly interested in those cases where the measure $\mu $ is infinite and the semigroup is not intrinsically ultracontractive. We relate quasi-ergodicity on $L^p(M,\mu )$ and uniqueness of the quasi-stationary measure with the finiteness of the heat content of the semigroup (for large values of t) and with the progressive uniform ground state domination property. The latter property is equivalent to a variant of quasi-ergodicity which progressively propagates in space as $t \uparrow \infty $; the propagation rate is determined by the decay of . We discuss several applications and illustrate our results with examples. This includes a complete description of quasi-ergodicity for a large class of semigroups corresponding to non-local Schrödinger operators with confining potentials.
Given a probability space $(X,\mu )$, a square integrable function f on such space and a (unilateral or bilateral) shift operator T, we prove under suitable assumptions that the ergodic means $N^{-1}\sum _{n=0}^{N-1} T^nf$ converge pointwise almost everywhere to zero with a speed of convergence which, up to a small logarithmic transgression, is essentially of the order of $N^{-1/2}$. We also provide a few applications of our results, especially in the case of shifts associated with toral endomorphisms.
We consider metrizable ergodic topological dynamical systems over locally compact, $\sigma $-compact abelian groups. We study pure point spectrum via suitable notions of almost periodicity for the points of the dynamical system. More specifically, we characterize pure point spectrum via mean almost periodicity of generic points. We then go on and show how Besicovitch almost periodic points determine both eigenfunctions and the measure in this case. After this, we characterize those systems arising from Weyl almost periodic points and use this to characterize weak and Bohr almost periodic systems. Finally, we consider applications to aperiodic order.
We consider a robust class of random non-uniformly expanding local homeomorphisms and Hölder continuous potentials with small variation. For each element of this class we develop the thermodynamical formalism and prove the existence and uniqueness of equilibrium states among non-uniformly expanding measures. Moreover, we show that these equilibrium states and the random topological pressure vary continuously in this setting.
In the present paper, we deal with asymptotical stability of Markov operators acting on abstract state spaces (i.e. an ordered Banach space, where the norm has an additivity property on the cone of positive elements). Basically, we are interested in the rate of convergence when a Markov operator T satisfies the uniform P-ergodicity, i.e.
$\|T^n-P\|\to 0$
, here P is a projection. We have showed that T is uniformly P-ergodic if and only if
$\|T^n-P\|\leq C\beta^n$
,
$0<\beta<1$
. In this paper, we prove that such a β is characterized by the spectral radius of T − P. Moreover, we give Deoblin’s kind of conditions for the uniform P-ergodicity of Markov operators.
We consider equivariant continuous families of discrete one-dimensional operators over arbitrary dynamical systems. We introduce the concept of a pseudo-ergodic element of a dynamical system. We then show that all operators associated to pseudo-ergodic elements have the same spectrum and that this spectrum agrees with their essential spectrum. As a consequence we obtain that the spectrum is constant and agrees with the essential spectrum for all elements in the dynamical system if minimality holds.
The classical spaces ℓp+, 1 ≤ p < ∞, and Lp−, 1<p ≤ ∞, are countably normed, reflexive Fréchet spaces in which the Cesàro operator C acts continuously. A detailed investigation is made of various operator theoretic properties of C (e.g., spectrum, point spectrum, mean ergodicity) as well as certain aspects concerning the dynamics of C (e.g., hypercyclic, supercyclic, chaos). This complements the results of [3, 4], where C was studied in the spaces ℂℕ, Lploc(ℝ+) for 1 < p < ∞ and C(ℝ+), which belong to a very different collection of Fréchet spaces, called quojections; these are automatically Banach spaces whenever they admit a continuous norm.
The Yang-Baxter-like matrix equation AXA = XAX is reconsidered, where A is any complex square matrix. A collection of spectral solutions for the unknown square matrix X were previously found. When A is diagonalisable, by applying the mean ergodic theorem we propose numerical methods to calculate those solutions.
We consider random dynamical systems with randomly chosen jumps on infinite-dimensional spaces. The choice of deterministic dynamical systems and jumps depends on a position. The system generalizes dynamical systems corresponding to learning systems, Poisson driven stochastic differential equations, iterated function system with infinite family of transformations and random evolutions. We will show that distributions which describe the dynamics of this system converge to an invariant distribution. We use recent results concerning asymptotic stability of Markov operators on infinite-dimensional spaces obtained by T. Szarek.
A discrete group $G$ is called identity excluding if the only irreducible unitary representation of $G$ which weakly contains the 1-dimensional identity representation is the 1-dimensional identity representation itself. Given a unitary representation $\pi $ of $G$ and a probability measure $\mu $ on $G$, let ${{P}_{\mu }}$ denote the $\mu $-average $\int{\pi (g)\mu (dg)}$. The goal of this article is twofold: (1) to study the asymptotic behaviour of the powers $P_{\mu }^{n}$, and (2) to provide a characterization of countable amenable identity excluding groups. We prove that for every adapted probability measure $\mu $ on an identity excluding group and every unitary representation $\pi $ there exists and orthogonal projection ${{E}_{\mu }}$ onto a $\pi $-invariant subspace such that $s-{{\lim }_{n\to \infty }}\,(P_{\mu }^{n}\,-\,\pi {{(a)}^{n}}\,{{E}_{\mu }})\,\,=\,0$ for every $a\,\in $ supp $\mu $. This also remains true for suitably defined identity excluding locally compact groups. We show that the class of countable amenable identity excluding groups coincides with the class of $\text{FC}$-hypercentral groups; in the finitely generated case this is precisely the class of groups of polynomial growth. We also establish that every adapted random walk on a countable amenable identity excluding group is ergodic.
We prove that Ornstein transformations are almost surely totally ergodic provided only that the cutting parameter is not bounded. We thus obtain a larger class of Ornstein transformations with the mixing property.
We investigate the relationship between the peripheral spectrum of a positive operator T on a Banach lattice E and the peripheral spectrum of the operators S dominated by T, that is, ]Sx] ≤ T]x] for all x ε E. This can be applied to obtain inheritance results for asymptotic properties of dominated operators.
Generalized Riesz products similar to the type which arise as the spectral measure for a rank-one transformation are studied. A condition for the mutual singularity of two such measures is given. As an application, a probability space of transformations is presented in which almost all transformations are singular with respect to Lebesgue measure.
Let be a semigroup of measure preserving transformations on a measure space (Ω, ℱ, μ). The main result of the paper is the proof of a.e. convergence for the moving averages where {FIn} is a superadditive process and {In} is a sequence of cubes in satisfying the "cone-condition". The identification of the limit is given. A moving local theorem is also proved.
In this paper, several characterizations are given of the group of eigenvalues of a rank one transformation. One of these is intimately related to the corresponding expression for the maximal spectral type of a rank one transformation given in an earlier paper.
In this paper it is shown that the maximal spectral type of a general rank one transformation is given by a kind of generalized Riesz product, with possibly some discrete measure.
Let ℝ denote the real line. Let {Tt}tєℝ be a measure preserving ergodic flow on a non atomic finite measure space (X, ℱ, μ). A nonnegative function φ on ℝ is called a weight function if ∫ℝ φ(t)dt = 1. Consider the weighted ergodic averages
of a function f X —> ℝ, where {θk} is a sequence of weight functions. Some sufficient and some necessary and sufficient conditions are given for the a.e. convergence of Akf, in particular for a special case in which
where φ is a fixed weight function and {(ak, rk)} is a sequence of pairs of real numbers such that rk > 0 for all k. These conditions are obtained by a combination of the methods of Bellow-Jones-Rosenblatt, developed to deal with moving ergodic averages, and the methods of Broise-Déniel-Derriennic, developed to deal with unbounded weight functions.
We generalize a result of L. Sucheston on obtaining multiparameter ergodic theorems from their single parameter versions. This result is then employed to prove a multiparameter, subsequence ergodic theorem for operator averages along special zero density subsequences.
The converse of the dominated ergodic theorem in infinite measure spaces is extended to non-singular transformations, i.e. transformations that only preserve the measure of null sets. An inverse weak maximal inequality is given and then applied to obtain related results in Orlicz spaces.
We show that when a positive contraction of type (p, q) is equipped with a positive norming function having full support, then it is related in a natural way to operators on other Lp spaces.