We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The article considers systems of interacting particles on networks with adaptively coupled dynamics. Such processes appear frequently in natural processes and applications. Relying on the notion of graph convergence, we prove that for large systems the dynamics can be approximated by the corresponding continuum limit. Well-posedness of the latter is also established.
We analyze the discounted probability of exponential Parisian ruin for the so-called scaled classical Cramér–Lundberg risk model. As in Cohen and Young (2020), we use the comparison method from differential equations to prove that the discounted probability of exponential Parisian ruin for the scaled classical risk model converges to the corresponding discounted probability for its diffusion approximation, and we derive the rate of convergence.
Global weak solutions to the continuous Smoluchowski coagulation equation (SCE) are constructed for coagulation kernels featuring an algebraic singularity for small volumes and growing linearly for large volumes, thereby extending previous results obtained in Norris (1999) and Cueto Camejo & Warnecke (2015). In particular, linear growth at infinity of the coagulation kernel is included and the initial condition may have an infinite second moment. Furthermore, all weak solutions (in a suitable sense) including the ones constructed herein are shown to be mass-conserving, a property which was proved in Norris (1999) under stronger assumptions. The existence proof relies on a weak compactness method in L1 and a by-product of the analysis is that both conservative and non-conservative approximations to the SCE lead to weak solutions which are then mass-conserving.
We study a population model with nonlocal diffusion, which is a delayed integro-differential equation with double nonlinearity and two integrable kernels. By comparison method and analytical technique, we obtain globally asymptotic stability of the zero solution and the positive equilibrium. The results obtained reveal that the globally asymptotic stability only depends on the property of nonlinearity. As an application, we discuss an example for a population model with age structure.
Using Krasnoselskii’s fixed point theorem, we deduce the existence of periodic solutions of nonlinear system of integro-dynamic equations on periodic time scales. These equations are studied under a set of assumptions on the functions involved in the equations. The equations will be called almost linear when these assumptions hold. The results of this paper are new for the continuous and discrete time scales.
A Legendre-collocation method is proposed to solve the nonlinear Volterra integral equations of the second kind. We provide a rigorous error analysis for the proposed method, which indicate that the numerical errors in L2-norm and L∞-norm will decay exponentially provided that the kernel function is sufficiently smooth. Numerical results are presented, which confirm the theoretical prediction of the exponential rate of convergence.
This paper is concerned with obtaining an approximate solution and an approximate derivative of the solution for neutral Volterra integro-differential equation with a weakly singular kernel. The solution of this equation, even for analytic data, is not smooth on the entire interval of integration. The Jacobi collocation discretization is proposed for the given equation. A rigorous analysis of error bound is also provided which theoretically justifies that both the error of approximate solution and the error of approximate derivative of the solution decay exponentially in L∞ norm and weighted L2 norm. Numerical results are presented to demonstrate the effectiveness of the spectral method.
In this paper we study the existence of periodic solutions of a Volterra type integral equation with infinite heredity. Banach fixed point theorem, Krasnosel'skii's fixed point theorem, and a combination of Krasnosel'skii's and Schaefer's fixed point theorems are employed in the analysis. The combination theorem of Krasnosel'skii and Schaefer requires an a priori bound on all solutions. We employ Liapunov's direct method to obtain such an a priori bound. In the process, we compare these theorems in terms of assumptions and outcomes.
The theory of a class of spectral methods is extended to Volterra integro-differential equations which contain a weakly singular kernel (t - s)->* with 0 < μ < 1. In this work, we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth. We provide a rigorous error analysis for the spectral methods, which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in L°°-norm and weighted L2-norm. The numerical examples are given to illustrate the theoretical results.
We introduce the principal matrix solution Z(t, s) of the linear Volterra-type vector integro-dynamic equation
and prove that it is the unique matrix solution of
We also show that the solution of
is unique and given by the variation of parameters formula
Let $\phi (n)$ be the Euler phi-function, define ${{\phi }_{0}}\left( n \right)\,=\,n$ and ${{\phi }_{k+1}}\left( n \right)\,=\,\phi \left( {{\phi }_{k}}\left( n \right) \right)$ for all $k\ge 0$. We will determine an asymptotic formula for the set of integers $n$ less than $x$ for which ${{\phi }_{k}}\left( n \right)$ is $y$-smooth, conditionally on a weak form of the Elliott–Halberstam conjecture.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.