We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a compact Abelian group and $E$ a subset of the group $\widehat {G}$ of continuous characters of $G$. We study Arens regularity-related properties of the ideals $L_E^1(G)$ of $L^1(G)$ that are made of functions whose Fourier transform is supported on $E\subseteq \widehat {G}$. Arens regularity of $L_E^1(G)$, the centre of $L_E^1(G)^{\ast \ast }$ and the size of $L_E^1(G)^\ast /\mathcal {WAP}(L_E^1(G))$ are studied. We establish general conditions for the regularity of $L_E^1(G)$ and deduce from them that $L_E^1(G)$ is not strongly Arens irregular if $E$ is a small-2 set (i.e. $\mu \ast \mu \in L^1(G)$ for every $\mu \in M_E^1(G)$), which is not a $\Lambda (1)$-set, and it is extremely non-Arens regular if $E$ is not a small-2 set. We deduce also that $L_E^1(G)$ is not Arens regular when $\widehat {G}\setminus E$ is a Lust-Piquard set.
We prove stronger variants of a multiplier theorem of Kislyakov. The key ingredients are based on ideas of Kislyakov and the Kahane–Salem–Zygmund inequality. As a by-product, we show various multiplier theorems for spaces of trigonometric polynomials on the n-dimensional torus $\mathbb {T}^n$ or Boolean cubes $\{-1,1\}^N$. Our more abstract approach based on local Banach space theory has the advantage that it allows to consider more general compact abelian groups instead of only the multidimensional torus. As an application, we show that various recent $\ell _1$-multiplier theorems for trigonometric polynomials in several variables or ordinary Dirichlet series may be proved without the Kahane–Salem–Zygmund inequality.
The purpose of this paper is to investigate the properties of spectral and tiling subsets of cyclic groups, with an eye towards the spectral set conjecture [9] in one dimension, which states that a bounded measurable subset of
$\mathbb {R}$
accepts an orthogonal basis of exponentials if and only if it tiles
$\mathbb {R}$
by translations. This conjecture is strongly connected to its discrete counterpart, namely that, in every finite cyclic group, a subset is spectral if and only if it is a tile. The tools presented herein are refinements of recent ones used in the setting of cyclic groups; the structure of vanishing sums of roots of unity [20] is a prevalent notion throughout the text, as well as the structure of tiling subsets of integers [1]. We manage to prove the conjecture for cyclic groups of order
$p^{m}q^{n}$
, when one of the exponents is
$\leq 6$
or when
$p^{m-2}<q^{4}$
, and also prove that a tiling subset of a cyclic group of order
$p_{1}^{m}p_{2}\dotsm p_{n}$
is spectral.
We show that the universal minimal proximal flow and the universal minimal strongly proximal flow of a discrete group can be realized as the Stone spaces of translation-invariant Boolean algebras of subsets of the group satisfying a higher-order notion of syndeticity. We establish algebraic, combinatorial and topological dynamical characterizations of these subsets that we use to obtain new necessary and sufficient conditions for strong amenability and amenability. We also characterize dense orbit sets, answering a question of Glasner, Tsankov, Weiss and Zucker.
The purpose of this note is to construct an example of a discrete non-abelian group G and a subset E of G, not contained in any abelian subgroup, that is a completely bounded $\Lambda (p)$ set for all $p<\infty ,$ but is neither a Leinert set nor a weak Sidon set.
In his seminal work on Sidon sets, Pisier found an important characterization of Sidonicity: A set is Sidon if and only if it is proportionally quasi-independent. Later, it was shown that Sidon sets were proportionally “special” Sidon in several other ways. Here, we prove that Sidon sets in torsion-free groups are proportionally $n$-degree independent, a higher order of independence than quasi-independence, and we use this to prove that Sidon sets are proportionally Sidon with Sidon constants arbitrarily close to one, the minimum possible value.
A subset $E$ of a discrete abelian group is called $\varepsilon$-Kronecker if all $E$-functions of modulus one can be approximated to within ϵ by characters. $E$ is called a Sidon set if all bounded $E$-functions can be interpolated by the Fourier transform of measures on the dual group. As $\varepsilon$-Kronecker sets with $\varepsilon \,<\,2$ possess the same arithmetic properties as Sidon sets, it is natural to ask if they are Sidon. We use the Pisier net characterization of Sidonicity to prove this is true.
We inspect the relationship between relative Fourier multipliers on noncommutative Lebesgue–Orlicz spaces of a discrete group $\Gamma$ and relative Toeplitz-Schur multipliers on Schatten–von-Neumann–Orlicz classes. Four applications are given: lacunary sets, unconditional Schauder bases for the subspace of a Lebesgue space determined by a given spectrum $\Lambda \,\subseteq \,\Gamma$, the norm of the Hilbert transformand the Riesz projection on Schatten–von-Neumann classes with exponent a power of 2, and the norm of Toeplitz Schur multipliers on Schatten–von-Neumann classes with exponent less than 1.
We characterise the 1-unconditional subsets $(\mathrm{e}_{rc})_{(r,c) \in I}$ of the set of elementary matrices in the Schatten–von-Neumann class $\mathrm{S}^p$. The set of couples $I$ must be the set of edges of a bipartite graph without cycles of even length $4 \lel \le p$ if $p$ is an even integer, and without cycles at all if $p$ is a positive real number that is not an even integer. In the latter case, $I$ is even a Varopoulos set of V-interpolation of constant 1. We also study the metric unconditional approximation property for the space $\mathrm{S}^p_I$ spanned by $(\mathrm{e}_{rc})_{(r,c) \in I}$ in $\mathrm{S}^p$.
An operator $T$ on a Banach space $X$ is said to be weakly supercyclic (respectively $N$-supercyclic) if there exists a one-dimensional (respectively $N$-dimensional) subspace of $X$ whose orbit under $T$ is weakly dense (respectively norm dense) in $X$. We show that a weakly supercyclic hyponormal operator is necessarily a multiple of a unitary operator, and we give an example of a weakly supercyclic unitary operator. On the other hand, we show that hyponormal operators are never $N$-supercyclic. Finally, we characterize $N$-supercyclic weighted shifts.
We consider maximal operators in the plane, defined by Cantor sets of directions, and show such operators are not bounded on
${{L}^{2}}$
if the Cantor set has positive Hausdorff dimension.
This paper studies a pointwise definition of sets of uniqueness on compact, 0-dimensional, metric groups. It is shown that this definition is equivalent for closed sets to one based on supports of pseudo functions. An analog of Rajchman's theorem is given leading to examples of sets of uniqueness.