We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A suitable notion of weak amenability for dual Banach algebras, which we call weak Connes amenability, is defined and studied. Among other things, it is proved that the measure algebra M(G) of a locally compact group G is always weakly Connes amenable. It can be a complement to Johnson’s theorem that $L^1(G)$ is always weakly amenable [10].
Let G be a group that is either virtually soluble or virtually free, and let ω be a weight on G. We prove that if G is infinite, then there is some maximal left ideal of finite codimension in the Beurling algebra $\ell^1(G, \omega)$, which fails to be (algebraically) finitely generated. This implies that a conjecture of Dales and Żelazko holds for these Banach algebras. We then go on to give examples of weighted groups for which this property fails in a strong way. For instance, we describe a Beurling algebra on an infinite group in which every closed left ideal of finite codimension is finitely generated and which has many such ideals in the sense of being residually finite dimensional. These examples seem to be hard cases for proving Dales and Żelazko’s conjecture.
Given a Fell bundle $\mathscr C\overset {q}{\to }\Xi $ over the discrete groupoid $\Xi $, we study the symmetry of the associated Hahn algebra $\ell ^{\infty ,1}(\Xi \!\mid \!\mathscr C)$ in terms of the isotropy subgroups of $\Xi $. We prove that $\Xi $ is symmetric (respectively hypersymmetric) if and only if all of the isotropy subgroups are symmetric (respectively hypersymmetric). We also characterise hypersymmetry using Fell bundles with constant fibres, showing that for discrete groupoids, ‘hypersymmetry’ equals ‘rigid symmetry’.
We characterise the existence of certain (weakly) compact multipliers of the second dual of symmetric abstract Segal algebras in both the group algebra $L^{1}(G)$ and the Fourier algebra $A(G)$ of a locally compact group G.
We prove that for a Banach algebra A having a bounded
$\mathcal {Z}(A)$
-approximate identity and for every
$\mathbf {[IN]}$
group G with a weight w which is either constant on conjugacy classes or satisfies
$w \geq 1$
,
$\mathcal {Z}(L^{1}_{w}(G) \otimes ^{\gamma } A) \cong \mathcal {Z}(L^{1}_{w}(G)) \otimes ^{\gamma } \mathcal {Z}(A)$
. As an application, we discuss the conditions under which
$\mathcal {Z}(L^{1}_{\omega }(G,A))$
enjoys certain Banach algebraic properties, such as weak amenability or semisimplicity.
Motivated by the recent result in Samei and Wiersma (2020, Advances in Mathematics 359, 106897) that quasi-Hermitian groups are amenable, we consider a generalization of this property on discrete groups associated to certain Roe-type algebras; we call it uniformly quasi-Hermitian. We show that the class of uniformly quasi-Hermitian groups is contained in the class of supramenable groups and includes all subexponential groups. We also show that they are invariant under quasi-isometry.
Let
$(G_1,\omega _1)$
and
$(G_2,\omega _2)$
be weighted discrete groups and
$0<p\leq 1$
. We characterise biseparating bicontinuous algebra isomorphisms on the p-Banach algebra
$\ell ^p(G_1,\omega _1)$
. We also characterise bipositive and isometric algebra isomorphisms between the p-Banach algebras
$\ell ^p(G_1,\omega _1)$
and
$\ell ^p(G_2,\omega _2)$
and isometric algebra isomorphisms between
$\ell ^p(S_1,\omega _1)$
and
$\ell ^p(S_2,\omega _2)$
, where
$(S_1,\omega _1)$
and
$(S_2,\omega _2)$
are weighted discrete semigroups.
Let G be a locally compact group and let
$\omega $
be a continuous weight on G. In this paper, we first characterize bicontinuous biseparating algebra isomorphisms between weighted
$L^p$
-algebras. As a result, we extend previous results of Edwards, Parrott, and Strichartz on algebra isomorphisms between
$L^p$
-algebras to the setting of weighted
$L^p$
-algebras. We then study the automorphisms of certain weighted
$L^p$
-algebras on integers, applying known results on composition operators to classical function spaces.
We study ring-theoretic (in)finiteness properties—such as Dedekind-finiteness and proper infiniteness—of ultraproducts (and more generally, reduced products) of Banach algebras.
While we characterise when an ultraproduct has these ring-theoretic properties in terms of its underlying sequence of algebras, we find that, contrary to the
$C^*$
-algebraic setting, it is not true in general that an ultraproduct has a ring-theoretic finiteness property if and only if “ultrafilter many” of the underlying sequence of algebras have the same property. This might appear to violate the continuous model theoretic counterpart of Łoś’s Theorem; the reason it does not is that for a general Banach algebra, the ring theoretic properties we consider cannot be verified by considering a bounded subset of the algebra of fixed bound. For Banach algebras, we construct counter-examples to show, for example, that each component Banach algebra can fail to be Dedekind-finite while the ultraproduct is Dedekind-finite, and we explain why such a counter-example is not possible for
$C^*$
-algebras. Finally, the related notion of having stable rank one is also studied for ultraproducts.
A Banach algebra $A$ is said to be a zero Jordan product determined Banach algebra if, for every Banach space $X$, every bilinear map $\unicode[STIX]{x1D711}:A\times A\rightarrow X$ satisfying $\unicode[STIX]{x1D711}(a,b)=0$ whenever $a$, $b\in A$ are such that $ab+ba=0$, is of the form $\unicode[STIX]{x1D711}(a,b)=\unicode[STIX]{x1D70E}(ab+ba)$ for some continuous linear map $\unicode[STIX]{x1D70E}$. We show that all $C^{\ast }$-algebras and all group algebras $L^{1}(G)$ of amenable locally compact groups have this property and also discuss some applications.
We study the second dual algebra of a Banach algebra and related problems. We resolve some questions raised by Ülger, which are related to Arens products. We then discuss a question of Gulick on the radical of the second dual algebra of the group algebra of a discrete abelian group and give an application of Arens regularity to Fourier and Fourier–Stieltjes transforms.
Let $S$ be a discrete inverse semigroup, $l^{1}(S)$ the Banach semigroup algebra on $S$ and $\mathbb{X}$ a Banach $l^{1}(S)$-bimodule which is an $L$-embedded Banach space. We show that under some mild conditions ${\mathcal{H}}^{1}(l^{1}(S),\mathbb{X})=0$. We also provide an application of the main result.
We introduce the concept of strong property $(\mathbb{B})$ with a constant for Banach algebras and, by applying a certain analysis on the Fourier algebra of the unit circle, we show that all C*-algebras and group algebras have the strong property $(\mathbb{B})$ with a constant given by $288\unicode[STIX]{x1D70B}(1+\sqrt{2})$. We then use this result to find a concrete upper bound for the hyperreflexivity constant of ${\mathcal{Z}}^{n}(A,X)$, the space of bounded $n$-cocycles from $A$ into $X$, where $A$ is a C*-algebra or the group algebra of a group with an open subgroup of polynomial growth and $X$ is a Banach $A$-bimodule for which ${\mathcal{H}}^{n+1}(A,X)$ is a Banach space. As another application, we show that for a locally compact amenable group $G$ and $1<p<\infty$, the space $CV_{P}(G)$ of convolution operators on $L^{p}(G)$ is hyperreflexive with a constant given by $384\unicode[STIX]{x1D70B}^{2}(1+\sqrt{2})$. This is the generalization of a well-known result of Christensen [‘Extensions of derivations. II’, Math. Scand.50(1) (1982), 111–122] for $p=2$.
Motivated by the definition of a semigroup compactication of a locally compact group and a large collection of examples, we introduce the notion of an (operator) homogeneous left dual Banach algebra (HLDBA) over a (completely contractive) Banach algebra $A$. We prove a Gelfand-type representation theorem showing that every HLDBA over A has a concrete realization as an (operator) homogeneous left Arens product algebra: the dual of a subspace of $A^{\ast }$ with a compatible (matrix) norm and a type of left Arens product $\Box$. Examples include all left Arens product algebras over $A$, but also, when $A$ is the group algebra of a locally compact group, the dual of its Fourier algebra. Beginning with any (completely) contractive (operator) $A$-module action $Q$ on a space $X$, we introduce the (operator) Fourier space $({\mathcal{F}}_{Q}(A^{\ast }),\Vert \cdot \Vert _{Q})$ and prove that $({\mathcal{F}}_{Q}(A^{\ast })^{\ast },\Box )$ is the unique (operator) HLDBA over $A$ for which there is a weak$^{\ast }$-continuous completely isometric representation as completely bounded operators on $X^{\ast }$ extending the dual module representation. Applying our theory to several examples of (completely contractive) Banach algebras $A$ and module operations, we provide new characterizations of familiar HLDBAs over A and we recover, and often extend, some (completely) isometric representation theorems concerning these HLDBAs.
We consider the unital Banach algebra $\ell ^{1}(\mathbb{Z}_{+})$ and prove directly, without using cyclic cohomology, that the simplicial cohomology groups ${\mathcal{H}}^{n}(\ell ^{1}(\mathbb{Z}_{+}),\ell ^{1}(\mathbb{Z}_{+})^{\ast })$ vanish for all $n\geqslant 2$. This proceeds via the introduction of an explicit bounded linear operator which produces a contracting homotopy for $n\geqslant 2$. This construction is generalised to unital Banach algebras $\ell ^{1}({\mathcal{S}})$, where ${\mathcal{S}}={\mathcal{G}}\cap \mathbb{R}_{+}$ and ${\mathcal{G}}$ is a subgroup of $\mathbb{R}_{+}$.
We investigate quantum group generalizations of various density results from Fourier analysis on compact groups. In particular, we establish the density of characters in the space of fixed points of the conjugation action on ${{L}^{2}}(\mathbb{G})$ and use this result to show the $\text{wea}{{\text{k}}^{\star }}$ density and normal density of characters in $Z{{L}^{\infty }}(\mathbb{G})$ and $ZC(\mathbb{G})$, respectively. As a corollary, we partially answer an open question of Woronowicz. At the level of ${{L}^{1}}(\mathbb{G})$, we show that the center $~z({{L}^{1}}(\mathbb{G}))$ is precisely the closed linear span of the quantum characters for a large class of compact quantum groups, including arbitrary compact Kac algebras. In the latter setting, we show, in addition, that $~z({{L}^{1}}(\mathbb{G}))$ is a completely complemented $~z({{L}^{1}}(\mathbb{G}))$-submodule of ${{L}^{2}}(\mathbb{G})$.
In this paper we introduce a new way of deforming convolution algebras and Fourier algebras on locally compact groups. We demonstrate that this new deformation allows us to reveal some information about the underlying groups by examining Banach algebra properties of deformed algebras. More precisely, we focus on representability as an operator algebra of deformed convolution algebras on compact connected Lie groups with connection to the real dimension of the underlying group. Similarly, we investigate complete representability as an operator algebra of deformed Fourier algebras on some finitely generated discrete groups with connection to the growth rate of the group.
Let $G$ be a locally compact group and let $\omega$ be a continuous weight on $G$. We show that for each of the Banach algebras ${{L}^{1}}\left( G,\,\omega \right),\,M\left( G,\,\omega \right),\,LUC{{\left( G,\,{{\omega }^{-1}} \right)}^{*}}$, and ${{L}^{1}}{{\left( G,\,\omega \right)}^{**}}$, the order structure combined with the algebra structure determines the weighted group.
A locally compact group G is compact if and only if its convolution algebras contain non-zero (weakly) completely continuous elements. Dually, G is discrete if its function algebras contain non-zero completely continuous elements. We prove non-commutative versions of these results in the case of locally compact quantum groups.
In this paper, for an arbitrary $\ell ^{1}$-Munn algebra $\mathfrak{A}$ over a Banach algebra $A$ with a sandwich matrix $P$, we characterise all homomorphisms from $\mathfrak{A}$ to a commutative Banach algebra $B$. Especially, we study the character space of this algebra. Then, as an application, its character amenability is investigated. Finally, we apply these results to certain semigroups, which are called Rees matrix semigroups.