Let   $X$  and
 $X$  and   $Y$  be Banach spaces and let
 $Y$  be Banach spaces and let   $f\,:\,X\,\to \,Y$  be an odd mapping. For any rational number
 $f\,:\,X\,\to \,Y$  be an odd mapping. For any rational number   $r\,\ne \,2$ , C. Baak, D. H. Boo, and Th. M. Rassias proved the Hyers–Ulam stability of the functional equation
 $r\,\ne \,2$ , C. Baak, D. H. Boo, and Th. M. Rassias proved the Hyers–Ulam stability of the functional equation
   $$rf\left( \frac{\sum\nolimits_{j=1}^{d}{{{x}_{j}}}}{r} \right)\,+\,\sum\limits_{\begin{smallmatrix}i\left( j \right)\,\in \left\{ 0,\,1 \right\} \\\sum\nolimits_{j=1}^{d}{i\left( j \right)=\ell } \end{smallmatrix}}{rf\left( \frac{\sum\nolimits_{j=1}^{d}{{{\left( -1 \right)}^{i\left( j \right)}}{{x}_{j}}}}{r} \right)}\,=\,\left( C_{d-1}^{\ell }\,-\,C_{d-1}^{\ell -1}\,+\,1 \right)\,\sum\limits_{j=1}^{d}{f\left( {{x}_{j}} \right),}$$
 $$rf\left( \frac{\sum\nolimits_{j=1}^{d}{{{x}_{j}}}}{r} \right)\,+\,\sum\limits_{\begin{smallmatrix}i\left( j \right)\,\in \left\{ 0,\,1 \right\} \\\sum\nolimits_{j=1}^{d}{i\left( j \right)=\ell } \end{smallmatrix}}{rf\left( \frac{\sum\nolimits_{j=1}^{d}{{{\left( -1 \right)}^{i\left( j \right)}}{{x}_{j}}}}{r} \right)}\,=\,\left( C_{d-1}^{\ell }\,-\,C_{d-1}^{\ell -1}\,+\,1 \right)\,\sum\limits_{j=1}^{d}{f\left( {{x}_{j}} \right),}$$  
where   $d$  and
 $d$  and   $\ell$  are positive integers so that
 $\ell$  are positive integers so that   $1\,<\,\ell \,<\,\frac{d}{2}$ , and
 $1\,<\,\ell \,<\,\frac{d}{2}$ , and   $C_{q}^{p}\,:=\frac{q!}{\left( q-p \right)!p!},\,p,\,q\,\in \,\mathbb{N}$  with
 $C_{q}^{p}\,:=\frac{q!}{\left( q-p \right)!p!},\,p,\,q\,\in \,\mathbb{N}$  with   $p\,\le \,q$ .
 $p\,\le \,q$ .
In this note we solve this equation for arbitrary nonzero scalar   $r$  and show that it is actuallyHyers–Ulam stable. We thus extend and generalize Baak et al.’s result. Other questions concerningthe
 $r$  and show that it is actuallyHyers–Ulam stable. We thus extend and generalize Baak et al.’s result. Other questions concerningthe   $^{*}$ -homomorphisms and the multipliers between
 $^{*}$ -homomorphisms and the multipliers between   ${{C}^{*}}$ -algebras are also considered.
 ${{C}^{*}}$ -algebras are also considered.