We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper studies various aspects of inverse limits of locally expanding affine linear maps on flat branched manifolds, which I call flat Wieler solenoids. Among the aspects studied are different types of cohomologies, the rates of mixing given by the Ruelle spectrum of the hyperbolic map acting on this space, and solutions of the cohomological equation in primitive substitution subshifts for Hölder functions. The overarching theme is that considerations of $\alpha $-Hölder regularity on Cantor sets go a long way.
In this paper, we address the issue of synchronization of coupled systems, introducing concepts of local and global synchronization for a class of systems that extend the model of coupled map lattices. A criterion for local synchronization is given; numerical experiments are exhibited to illustrate the criteria and also to raise some questions in the end of the text.
We show that a fibre-preserving self-diffeomorphism which has hyperbolic splittings along the fibres on a compact principal torus bundle is topologically conjugate to a map that is linear in the fibres.
Given an ample groupoid, we construct a spectral sequence with groupoid homology with integer coefficients on the second sheet, converging to the K-groups of the (reduced) groupoid C
$^*$
-algebra, provided the groupoid has torsion-free stabilizers and satisfies a strong form of the Baum–Connes conjecture. The construction is based on the triangulated category approach to the Baum–Connes conjecture developed by Meyer and Nest. We also present a few applications to topological dynamics and discuss the HK conjecture of Matui.
We construct a quasianalytic field $\mathcal{F}$ of germs at $+\infty $ of real functions with logarithmic generalized power series as asymptotic expansions, such that $\mathcal{F}$ is closed under differentiation and log-composition; in particular, $\mathcal{F}$ is a Hardy field. Moreover, the field $\mathcal{F}\,\circ \,\left( -\text{log} \right)$ of germs at ${{0}^{+}}$ contains all transition maps of hyperbolic saddles of planar real analytic vector fields.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.