We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we present a sufficient framework to exhibit the sample path-wise asymptotic flocking dynamics of the Cucker–Smale model with unit-speed constraint and the randomly switching network topology. We employ a matrix formulation of the given equation, which allows us to evaluate the diameter of velocities with respect to the adjacency matrix of the network. Unlike the previous result on the randomly switching Cucker–Smale model, the unit-speed constraint disallows the system to be considered as a nonautonomous linear ordinary differential equation on velocity vector, which forces us to get a weaker form of the flocking estimate than the result for the original Cucker–Smale model.
Many reaction networks arising in applications are multistationary, that is, they have the capacity for more than one steady state, while some networks exhibit absolute concentration robustness (ACR), which means that some species concentration is the same at all steady states. Both multistationarity and ACR are significant in biological settings, but only recently has attention focused on the possibility for these properties to coexist. Our main result states that such coexistence in at-most-bimolecular networks (which encompass most networks arising in biology) requires at least three species, five complexes and three reactions. We prove additional bounds on the number of reactions for general networks based on the number of linear conservation laws. Finally, we prove that, outside of a few exceptional cases, ACR is equivalent to non-multistationarity for bimolecular networks that are small (more precisely, one-dimensional or up to two species). Our proofs involve analyses of systems of sparse polynomials, and we also use classical results from chemical reaction network theory.
The present paper deals with the kinetic-theoretic description of the evolution of systems consisting of many particles interacting not only with each other but also with the external world, so that the equation governing their evolution contains an additional term representing such interaction, called the ‘forcing term’. Firstly, the interactions between pairs of particles are both conservative and nonconservative; the latter represents, among others, birth/death rates. The ‘forcing term’ does not express a ‘classical’ force exerted by the external world on the particles, but a more general influence on the effects of mutual interactions of particles, for instance, climate changes, that increase or decrease the different agricultural productions at different times, thus altering the economic relationships between different subsystems, that in turn can be also perturbed by stock market fluctuations, sudden wars, periodic epidemics, and so on. Thus, the interest towards these problems moves the mathematical analysis of the effects of different kinds of forcing terms on solutions to equations governing the collective (that is statistical) behaviour of such nonconservative many-particle systems. In the present paper, we offer a study of the basic mathematical properties of such solutions, along with some numerical simulations to show the effects of forcing terms for a classical prey–predator model in ecology.
In this paper, we study existence of rotating periodic solutions for p-Laplacian differential systems. We first build a new continuation theorem by topological degree, and then obtain the existence of rotating periodic solutions for two kinds of p-Laplacian differential systems via this continuation theorem, extend some existing relevant results.
The dynamics of interfaces in slow diffusion equations with strong absorption are studied. Asymptotic methods are used to give descriptions of the behaviour local to a comprehensive range of possible singular events that can occur in any evolution. These events are: when an interface changes its direction of propagation (reversing and anti-reversing), when an interface detaches from an absorbing obstacle (detaching), when two interfaces are formed by film rupture (touchdown) and when the solution undergoes extinction. Our account of extinction and self-similar reversing and anti-reversing is built upon previous work; results on non-self-similar reversing and anti-reversing and on the various types of detachment and touchdown are developed from scratch. In all cases, verification of the asymptotic results against numerical solutions to the full PDE is provided. Self-similar solutions, both of the full equation and of its asymptotic limits, play a central role in the analysis.
We establish a priori bounds, existence and qualitative behaviour of positive radial solutions in annuli for a class of nonlinear systems driven by Pucci extremal operators and Lane-Emden coupling in the superlinear regime. Our approach is purely nonvariational. It is based on the shooting method, energy functionals, spectral properties, and on a suitable criteria for locating critical points in annular domains through the moving planes method that we also prove.
We work with polynomial three-dimensional rigid differential systems. Using the Lyapunov constants, we obtain lower bounds for the cyclicity of the known rigid centres on their centre manifolds. Moreover, we obtain an example of a quadratic rigid centre from which is possible to bifurcate 13 limit cycles, which is a new lower bound for three-dimensional quadratic systems.
Motivated by the definition of rigid centres for planar differential systems, we introduce the study of rigid centres on the center manifolds of differential systems on $\mathbb {R}^{3}$. On the plane, these centres have been extensively studied and several interesting results have been obtained. We present results that characterize the rigid systems on $\mathbb {R}^{3}$ and solve the centre-focus problem for several families of rigid systems.
We analyse the structure of equilibria of a coagulation–fragmentation–death model of silicosis. We present exact multiplicity results in the particular case of piecewise constant coefficients, results on existence and non-existence of equilibria in the general case, as well as precise asymptotics for the infinite series that arise in the case of power law coefficients.
Global weak solutions to the continuous Smoluchowski coagulation equation (SCE) are constructed for coagulation kernels featuring an algebraic singularity for small volumes and growing linearly for large volumes, thereby extending previous results obtained in Norris (1999) and Cueto Camejo & Warnecke (2015). In particular, linear growth at infinity of the coagulation kernel is included and the initial condition may have an infinite second moment. Furthermore, all weak solutions (in a suitable sense) including the ones constructed herein are shown to be mass-conserving, a property which was proved in Norris (1999) under stronger assumptions. The existence proof relies on a weak compactness method in L1 and a by-product of the analysis is that both conservative and non-conservative approximations to the SCE lead to weak solutions which are then mass-conserving.
We revisit the well-known chemostat model, considering that bacteria can be attached together in aggregates or flocs. We distinguish explicitly free and attached compartments in the model and give sufficient conditions for coexistence of these two forms. We then study the case of fast attachment and detachment and show how it is related to density-dependent growth functions. Finally, we give some insights concerning the cases of multi-specific flocs and different removal rates.
A generalised Hermite spectral method for Fisher's equation in genetics with different asymptotic solution behaviour at infinities is proposed, involving a fully discrete scheme using a second order finite difference approximation in the time. The convergence and stability of the scheme are analysed, and some numerical results demonstrate its efficiency and substantiate our theoretical analysis.
Entropy maximising spatial interaction models have been widely exploited in a range of disciplines and applications: from trade and migration flows to the spread of riots and the understanding of spatial patterns in archaeological sites of interest. When embedded into a dynamic system and framed in the context of a retail model, the dynamics of centre growth poses an interesting mathematical problem, with bifurcations and phase changes, which may be addressed analytically. In this paper, we present some analysis of the continuous retail model and the corresponding discrete version, which yields insights into the effect of space on the evolving system, and an understanding of why certain retail centres are more successful than others. The slowly developing growths and the fast explosive growths that are of particular concern are explained in detail.
In this paper we determine theHausdorff measure of noncompactness on the sequence space $n\left( \phi \right)$ of $\text{W}\text{.}\,\text{L}\text{.}\,\text{C}.$ Sargent. Further we apply the technique of measures of noncompactness to the theory of infinite systems of differential equations in the Banach sequence spaces $n\left( \phi \right)$ and $m\left( \phi \right)$. Our aim is to present some existence results for infinite systems of differential equations formulated with the help of measures of noncompactness.
The exact analytical expression of the period of a conservative nonlinear oscillator with a non-polynomial potential, is obtained. Such an oscillatory system corresponds to the transverse vibration of a particle attached to the center of a stretched elastic wire. The result is given in terms of elliptic functions and validates the approximate formulae derived from various approximation procedures as the harmonic balance method and the rational harmonic balance method usually implemented for solving such a nonlinear problem.
In this paper, we construct a simplified neuronal model that is capable of simulating the instigation of cortical spreading depression (CSD) and propagation of a CSD wave. Our model is a simplification and extension of a single neuron model proposed in the literature for studying the instigation of CSD. Using the simplified neuronal model, we construct a network of these simplified neurons. This network model shows that the propagation of a CSD wave occurs naturally after it is instigated electrically or chemically. Although the model is simple, the speed of the CSD wave predicted by our model is consistent with experimentally observed values. Finally, our model allows us to investigate the effects of specific ion channels on the spread of a CSD wave.
We present a stability analysis of steady-state solutions of a continuous-time predator–prey population dynamics model subject to Allee effects on the prey population which occur at low population density. Numerical simulations show that the system subject to an Allee effect takes a much longer time to reach its stable steady-state solution. This result differs from that obtained for the discrete-time version of the same model.
Type I domains are the domains of the self-adjoint operators determined by the weak formulation of formally self-adjoint differential expressions ℓ. This class of operators is defined by the requirement that the sesquilinear form q(u, v) obtained from ℓ by integration by parts agrees with the inner product 〈ℓu, v〉. A complete characterisation of the boundary conditions assumed by functions in these domains for second-order differential expressions is given in this paper. In the singular case, the boundary conditions are stated in terms of certain ‘boundary condition’ functions and in the regular case they are given in terms of classical function values.
In this paper we describe a special class of self-adjoint operators associated with the singular self-adjoint second-order differential expression ℓ. This class is defined by the requirement that the sesquilinear form q(u, v) obtained from ℓ by integration by parts once agrees with the inner product 〈ℓu, v〉. We call this class Type I operators. The Friedrichs Extension is a special case of these operators. A complete characterization of these operators is given, for the various values of the deficiency index, in terms of their domains and the boundary conditions they satisfy (separated or coupled).