We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Based on the work of Mauldin and Williams [‘On the Hausdorff dimension of some graphs’, Trans. Amer. Math. Soc.298(2) (1986), 793–803] on convex Lipschitz functions, we prove that fractal interpolation functions belong to the space of convex Lipschitz functions under certain conditions. Using this, we obtain some dimension results for fractal functions. We also give some bounds on the fractal dimension of fractal functions with the help of oscillation spaces.
The finite Fourier transform of a family of orthogonal polynomials is the usual transform of these polynomials extended by $0$ outside their natural domain of orthogonality. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families.
In this paper we consider polynomials orthogonal with respect to the linear functional defined on the space of all algebraic polynomials by
where α,β> -1/2 are real numbers such that ℓ = |β - α| is a positive integer, and ζ∈ R{0}. We prove the existence of such orthogonal polynomials for some pairs of α and ζ and for all nonnegative integers ℓ. For such orthogonal polynomials we derive three-term recurrence relations and also some differential-difference relations. For such orthogonal polynomials the corresponding quadrature rules of Gaussian type are considered. Also, some numerical examples are included.
We introduce a family of orthogonal functions, termed as generalized Slepian functions (GSFs), closely related to the time-frequency concentration problem on a unit disk in D. Slepian [19]. These functions form a complete orthogonal system in with , and can be viewed as a generalization of the Jacobi polynomials with parameter (α, 0). We present various analytic and asymptotic properties of GSFs, and study spectral approximations by such functions.
We show that the value distribution (complex oscillation) of solutions of certain periodic second order ordinary differential equations studied by Bank, Laine and Langley is closely related to confluent hypergeometric functions, Bessel functions and Bessel polynomials. As a result, we give a complete characterization of the zero-distribution in the sense of Nevanlinna theory of the solutions for two classes of the ODEs. Our approach uses special functions and their asymptotics. New results concerning finiteness of the number of zeros (finite-zeros) problem of Bessel and Coulomb wave functions with respect to the parameters are also obtained as a consequence. We demonstrate that the problem for the remaining class of ODEs not covered by the above “special function approach” can be described by a classical Heine problem for differential equations that admit polynomial solutions.
$$\left| P_{n}^{\left( s \right)}\left( x \right) \right|\le P_{n}^{\left( s \right)}\left( 1 \right)\left( {{\left| x \right|}^{n}}+\frac{n-1}{2s+1}\left( 1-{{\left| x \right|}^{n}} \right) \right)$$
where $P_{n}^{\left( s \right)}\left( x \right)$ is the classical ultraspherical polynomial of degree $n$ and order $s\ge n\frac{1+\sqrt{5}}{4}$. This inequality can be refined in $\left[ 0,z_{n}^{s} \right]$ and $\left[ z_{n}^{s},1 \right]$, where $z_{n}^{s}$ denotes the largest zero of $P_{n}^{\left( s \right)}\left( x \right)$.
A $q$-discrete analog of the Toda molecule equation and its $N$-soliton solution are constructed by using the bilinear method. The solution is expressed in the Casorati determinant form whose elements are given in terms of the $q$-orthogonal polynomials.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.