Article contents
Uniform Estimates of Ultraspherical Polynomials of Large Order
Published online by Cambridge University Press: 20 November 2018
Abstract
In this paper we prove the sharp inequality

where $P_{n}^{\left( s \right)}\left( x \right)$ is the classical ultraspherical polynomial of degree
$n$ and order
$s\ge n\frac{1+\sqrt{5}}{4}$. This inequality can be refined in
$\left[ 0,z_{n}^{s} \right]$ and
$\left[ z_{n}^{s},1 \right]$, where
$z_{n}^{s}$ denotes the largest zero of
$P_{n}^{\left( s \right)}\left( x \right)$.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2005
References

- 1
- Cited by