We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The role of right ventricular longitudinal strain for assessing patients with repaired tetralogy of Fallot is not fully understood. In this study, we aimed to evaluate its relation with other structural and functional parameters in these patients.
Methods
Patients followed-up in a grown-up CHD unit, assessed by transthoracic echocardiography, cardiac MRI, and treadmill exercise testing, were retrospectively evaluated. Right ventricular size and function and pulmonary regurgitation severity were assessed by echocardiography and MRI. Right ventricular longitudinal strain was evaluated in the four-chamber view using the standard semiautomatic method.
Results
In total, 42 patients were included (61% male, 32±8 years). The mean right ventricular longitudinal strain was −16.2±3.7%, and the right ventricular ejection fraction, measured by MRI, was 42.9±7.2%. Longitudinal strain showed linear correlation with tricuspid annular systolic excursion (r=−0.40) and right ventricular ejection fraction (r=−0.45) (all p<0.05), which in turn showed linear correlation with right ventricular fractional area change (r=0.50), pulmonary regurgitation colour length (r=0.35), right ventricular end-systolic volume (r=−0.60), and left ventricular ejection fraction (r=0.36) (all p<0.05). Longitudinal strain (β=−0.72, 95% confidence interval −1.41, −0.15) and left ventricular ejection fraction (β=0.39, 95% confidence interval 0.11, 0.67) were independently associated with right ventricular ejection fraction. The best threshold of longitudinal strain for predicting a right ventricular ejection fraction of <40% was −17.0%.
Conclusions
Right ventricular longitudinal strain is a powerful method for evaluating patients with tetralogy of Fallot. It correlated with echocardiographic right ventricular function parameters and was independently associated with right ventricular ejection fraction derived by MRI.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.