We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we establish a general form of the mass transference principle for systems of linear forms conjectured in 2009. We also present a number of applications of this result to problems in Diophantine approximation. These include a general transference of Lebesgue measure Khintchine–Groshev type theorems to Hausdorff measure statements. The statements we obtain are applicable in both the homogeneous and inhomogeneous settings as well as allowing transference under any additional constraints on approximating integer points. In particular, we establish Hausdorff measure counterparts of some Khintchine–Groshev type theorems with primitivity constraints recently proved by Dani, Laurent and Nogueira.
We construct dense Borel measurable subgroups of Lie groups of intermediate Hausdorff dimension. In particular, we generalize the Erdős–Volkmann construction [Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math.221 (1966), 203–208], showing that any nilpotent $\sigma $-compact Lie group $N$ admits dense Borel subgroups of arbitrary dimension between zero and $\dim N$. In algebraic groups defined over a finite extension of the rationals, using diophantine properties of algebraic numbers, we are also able to construct dense subgroups of arbitrary dimension, but the general case remains open. In particular, we raise the following question: does there exist a measurable proper subgroup of $ \mathbb{R} $ of positive Hausdorff dimension which is stable under multiplication by a transcendental number? Subgroups of nilpotent $p$-adic analytic groups are also discussed.
For and α, we consider sets of numbers x such that for infinitely many n, x is 2−αn-close to some ∑ ni=1ωiλi, where ωi∈{0,1}. These sets are in Falconer’s intersection classes for Hausdorff dimension s for some s such that −(1/α)(log λ /log 2 )≤s≤1/α. We show that for almost all , the upper bound of s is optimal, but for a countable infinity of values of λ the lower bound is the best possible result.
We study the Hausdorff dimensions of invariant sets for self-similar and self-affine iterated function systems in the Heisenberg group. In our principal result we obtain almost sure formulae for the dimensions of self-affine invariant sets, extending to the Heisenberg setting some results of Falconer and Solomyak in Euclidean space. As an application, we complete the proof of the comparison theorem for Euclidean and Heisenberg Hausdorff dimension initiated by Balogh, Rickly and Serra-Cassano.
On the symbolic space endowed with a metric given by a Gibbs measure, it is shown that, for any invariant probability measure $\mu$ other than the given Gibbs measure, the set of $\mu$-generical points satisfies a ‘zero-infinity law’ (in particular, its Hausdorff and packing measure are infinite). This extends a result of R. Kaufman on Besicovitch–Eggleston sets, and applies to level sets of Birkhoff averages and certain subsets of self-similar sets.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.