We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that for every countable group, any sequence of approximate homomorphisms with values in permutations can be realized as the restriction of a sofic approximation of an orbit equivalence relation. Moreover, this orbit equivalence relation is uniquely determined by the invariant random subgroup of the approximate homomorphisms. We record applications of this result to recover various known stability and conjugacy characterizations for almost homomorphisms of amenable groups.
Let $G$ be a locally compact group and $\pi $ a representation of $G$ by weakly* continuous isometries acting in a dual Banach space $E$. Given a probability measure $\mu $ on $G$, we study the Choquet–Deny equation $\pi (\mu )x\,=\,x,\,x\,\in \,E$. We prove that the solutions of this equation form the range of a projection of norm 1 and can be represented by means of a “Poisson formula” on the same boundary space that is used to represent the bounded harmonic functions of the random walk of law $\mu $. The relation between the space of solutions of the Choquet–Deny equation in $E$ and the space of bounded harmonic functions can be understood in terms of a construction resembling the ${{W}^{*}}$-crossed product and coinciding precisely with the crossed product in the special case of the Choquet–Deny equation in the space $E\,=\,B({{L}^{2}}(G))$ of bounded linear operators on ${{L}^{2}}(G)$. Other general properties of the Choquet–Deny equation in a Banach space are also discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.