We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The 'detective' power of stable isotopes for processes that occurred in the past, and for elucidating mechanisms at the molecular level, has impressed researchers over the past 100 years, since the time when isotopes of elements were first discovered. While most are interested in the normalized abundance ratios of two isotopes of an element, further power was unleashed when researchers investigated the relationship of three or more isotopes of the same element, e.g. 16O, 17O, and 18O for oxygen. This Element focuses on the history of discovery of triple isotope effects, the conceptual framework behind these effects, and major lines of development in the past few years of triple oxygen isotope research.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.