We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The proof of Theorem 3.14 contains an unsubstantiated claim. To overcome this problem, we add a hypothesis to the statement of 3.14 and we provide a new valid proof. We adjust Theorem 3.15, Corollary 3.16, Proposition 4.23, Theorem 4.26, Corollary 4.29, and Corollary 4.32 accordingly.
We establish a McKay correspondence for finite and linearly reductive subgroup schemes of ${\mathbf {SL}}_2$ in positive characteristic. As an application, we obtain a McKay correspondence for all rational double point singularities in characteristic $p\geq 7$. We discuss linearly reductive quotient singularities and canonical lifts over the ring of Witt vectors. In dimension 2, we establish simultaneous resolutions of singularities of these canonical lifts via G-Hilbert schemes. In the appendix, we discuss several approaches towards the notion of conjugacy classes for finite group schemes: This is an ingredient in McKay correspondences, but also of independent interest.
In this paper, we give Pieri rules for skew dual immaculate functions and their recently discovered row-strict counterparts. We establish our rules using a right-action analogue of the skew Littlewood–Richardson rule for Hopf algebras of Lam–Lauve–Sottile. We also obtain Pieri rules for row-strict (dual) immaculate functions.
In this work, we construct the deformed Butcher-Connes-Kreimer Hopf algebra coming from the theory of Regularity Structures as the universal envelope of a post-Lie algebra. We show that this can be done using either of the two combinatorial structures that have been proposed in the context of singular SPDEs: decorated trees and multi-indices. Our construction is inspired from multi-indices where the Hopf algebra was obtained as the universal envelope of a Lie algebra, and it has been proved that one can find a basis that is symmetric with respect to certain elements. We show that this Lie algebra comes from an underlying post-Lie structure.
The Hopf–Galois structures admitted by a Galois extension of fields $ L/K $ with Galois group G correspond bijectively with certain subgroups of $ \mathrm{Perm}(G) $. We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf–Galois structures, which we term ρ-conjugation. We study properties of this construction, with particular emphasis on the Hopf–Galois analogue of the Galois correspondence, the connection with skew left braces, and applications to questions of integral module structure in extensions of local or global fields. In particular, we show that the number of distinct ρ-conjugates of a given Hopf–Galois structure is determined by the corresponding skew left brace, and that if $ H, H^{\prime} $ are Hopf algebras giving ρ-conjugate Hopf–Galois structures on a Galois extension of local or global fields $ L/K $ then an ambiguous ideal $ \mathfrak{B} $ of L is free over its associated order in H if and only if it is free over its associated order in Hʹ. We exhibit a variety of examples arising from interactions with existing constructions in the literature.
We provide a correspondence between one-sided coideal subrings and one-sided ideal two-sided coideals in an arbitrary bialgebroid. We prove that, under some expected additional conditions, this correspondence becomes bijective for Hopf algebroids. As an application, we investigate normal Hopf ideals in commutative Hopf algebroids (affine groupoid schemes) in connection with the study of normal affine subgroupoids.
We present a categorical point of view on dynamical quantum groups in terms of categories of Harish-Chandra bimodules. We prove Tannaka duality theorems for forgetful functors into the monoidal category of Harish-Chandra bimodules in terms of a slight modification of the notion of a bialgebroid. Moreover, we show that the standard dynamical quantum groups
$F(G)$
and
$F_q(G)$
are related to parabolic restriction functors for classical and quantum Harish-Chandra bimodules. Finally, we exhibit a natural Weyl symmetry of the parabolic restriction functor using Zhelobenko operators and show that it gives rise to the action of the dynamical Weyl group.
We present a framework for the computation of the Hopf 2-cocycles involved in the deformations of Nichols algebras over semisimple Hopf algebras. We write down a recurrence formula and investigate the extent of the connection with invariant Hochschild cohomology in terms of exponentials. As an example, we present detailed computations leading to the explicit description of the Hopf 2-cocycles involved in the deformations of a Nichols algebra of Cartan type
$A_2$
with
$q=-1$
, a.k.a. the positive part of the small quantum group
$\mathfrak{u}^+_{\sqrt{-\text{1}}}(\mathfrak{sl}_3)$
. We show that these cocycles are generically pure, that is they are not cohomologous to exponentials of Hochschild 2-cocycles.
We complete the classification of the pointed Hopf algebras with finite Gelfand-Kirillov dimension that are liftings of the Jordan plane over a nilpotent-by-finite group, correcting the statement in [N. Andruskiewitsch, I. Angiono and I. Heckenberger, Liftings of Jordan and super Jordan planes, Proc. Edinb. Math. Soc., II. Ser. 61(3) (2018), 661–672.].
Let F be a field of characteristic zero, and let
$UT_2$
be the algebra of
$2 \times 2$
upper triangular matrices over F. In a previous paper by Centrone and Yasumura, the authors give a description of the action of Taft’s algebras
$H_m$
on
$UT_2$
and its
$H_m$
-identities. In this paper, we give a complete description of the space of multilinear
$H_m$
-identities in the language of Young diagrams through the representation theory of the hyperoctahedral group. We finally prove that the variety of
$H_m$
-module algebras generated by
$UT_2$
has the Specht property, i.e., every
$T^{H_m}$
-ideal containing the
$H_m$
-identities of
$UT_2$
is finitely based.
The finite dual
$H^{\circ}$
of an affine commutative-by-finite Hopf algebra H is studied. Such a Hopf algebra H is an extension of an affine commutative Hopf algebra A by a finite dimensional Hopf algebra
$\overline{H}$
. The main theorem gives natural conditions under which
$H^{\circ}$
decomposes as a crossed or smash product of
$\overline{H}^{\ast}$
by the finite dual
$A^{\circ}$
of A. This decomposition is then further analysed using the Cartier–Gabriel–Kostant theorem to obtain component Hopf subalgebras of
$H^{\circ}$
mapping onto the classical components of
$A^{\circ}$
. The detailed consequences for a number of families of examples are then studied.
We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equations under lower regularity assumptions than classical techniques require. The key idea to control the nonlinear frequency interactions in the system up to arbitrary high order thereby lies in a tailored decorated tree formalism. Our algebraic structures are close to the ones developed for singular stochastic PDEs (SPDEs) with regularity structures. We adapt them to the context of dispersive PDEs by using a novel class of decorations which encode the dominant frequencies. The structure proposed in this article is new and gives a variant of the Butcher–Connes–Kreimer Hopf algebra on decorated trees. We observe a similar Birkhoff type factorisation as in SPDEs and perturbative quantum field theory. This factorisation allows us to single out oscillations and to optimise the local error by mapping it to the particular regularity of the solution. This use of the Birkhoff factorisation seems new in comparison to the literature. The field of singular SPDEs took advantage of numerical methods and renormalisation in perturbative quantum field theory by extending their structures via the adjunction of decorations and Taylor expansions. Now, through this work, numerical analysis is taking advantage of these extended structures and provides a new perspective on them.
We introduce an infinite variant of hypersurface support for finite-dimensional, noncommutative complete intersections. We show that hypersurface support defines a support theory for the big singularity category
$\operatorname {Sing}(R)$
, and that the support of an object in
$\operatorname {Sing}(R)$
vanishes if and only if the object itself vanishes. Our work is inspired by Avramov and Buchweitz’ support theory for (commutative) local complete intersections. In the companion piece [27], we employ hypersurface support for infinite-dimensional modules, and the results of the present paper, to classify thick ideals in stable categories for a number of families of finite-dimensional Hopf algebras.
We explicitly determine the defining relations of all quantum symmetric pair coideal subalgebras of quantised enveloping algebras of Kac–Moody type. Our methods are based on star products on noncommutative ${\mathbb N}$-graded algebras. The resulting defining relations are expressed in terms of continuous q-Hermite polynomials and a new family of deformed Chebyshev polynomials.
We consider Akbarov's holomorphic version of the non-commutative Pontryagin duality for a complex Lie group. We prove, under the assumption that $G$ is a Stein group with finitely many components, that (1) the topological Hopf algebra of holomorphic functions on $G$ is holomorphically reflexive if and only if $G$ is linear; (2) the dual cocommutative topological Hopf algebra of exponential analytic functional on $G$ is holomorphically reflexive. We give a counterexample, which shows that the first criterion cannot be extended to the case of infinitely many components. Nevertheless, we conjecture that, in general, the question can be solved in terms of the Banach-algebra linearity of $G$.
Wick polynomials and Wick products are studied in the context of noncommutative probability theory. It is shown that free, Boolean, and conditionally free Wick polynomials can be defined and related through the action of the group of characters over a particular Hopf algebra. These results generalize our previous developments of a Hopf-algebraic approach to cumulants and Wick products in classical probability theory.
We investigate a method of construction of central deformations of associative algebras, which we call centrification. We prove some general results in the case of Hopf algebras and provide several examples.
We study the depth filtration on multiple zeta values, on the motivic Galois group of mixed Tate motives over $\mathbb {Z}$ and on the Grothendieck–Teichmüller group, and its relation to modular forms. Using period polynomials for cusp forms for $\mathrm {SL} _2(\mathbb {Z})$, we construct an explicit Lie algebra of solutions to the linearized double shuffle equations, which gives a conjectural description of all identities between multiple zeta values modulo $\zeta (2)$ and modulo lower depth. We formulate a single conjecture about the homology of this Lie algebra which implies conjectures due to Broadhurst and Kreimer, Racinet, Zagier, and Drinfeld on the structure of multiple zeta values and on the Grothendieck–Teichmüller Lie algebra.
For a finite-dimensional Hopf algebra
$\mathsf {A}$
, the McKay matrix
$\mathsf {M}_{\mathsf {V}}$
of an
$\mathsf {A}$
-module
$\mathsf {V}$
encodes the relations for tensoring the simple
$\mathsf {A}$
-modules with
$\mathsf {V}$
. We prove results about the eigenvalues and the right and left (generalized) eigenvectors of
$\mathsf {M}_{\mathsf {V}}$
by relating them to characters. We show how the projective McKay matrix
$\mathsf {Q}_{\mathsf {V}}$
obtained by tensoring the projective indecomposable modules of
$\mathsf {A}$
with
$\mathsf {V}$
is related to the McKay matrix of the dual module of
$\mathsf {V}$
. We illustrate these results for the Drinfeld double
$\mathsf {D}_n$
of the Taft algebra by deriving expressions for the eigenvalues and eigenvectors of
$\mathsf {M}_{\mathsf {V}}$
and
$\mathsf {Q}_{\mathsf {V}}$
in terms of several kinds of Chebyshev polynomials. For the matrix
$\mathsf {N}_{\mathsf {V}}$
that encodes the fusion rules for tensoring
$\mathsf {V}$
with a basis of projective indecomposable
$\mathsf {D}_n$
-modules for the image of the Cartan map, we show that the eigenvalues and eigenvectors also have such Chebyshev expressions.
We consider the adjoint representation of a Hopf algebra $H$ focusing on the locally finite part, $H_{{\textrm ad\,fin}}$, defined as the sum of all finite-dimensional subrepresentations. For virtually cocommutative $H$ (i.e., $H$ is finitely generated as module over a cocommutative Hopf subalgebra), we show that $H_{{\textrm ad\,fin}}$ is a Hopf subalgebra of $H$. This is a consequence of the fact, proved here, that locally finite parts yield a tensor functor on the module category of any virtually pointed Hopf algebra. For general Hopf algebras, $H_{{\textrm ad\,fin}}$ is shown to be a left coideal subalgebra. We also prove a version of Dietzmann's Lemma from group theory for Hopf algebras.