We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let
$\mathscr {A}$
be a topological Azumaya algebra of degree
$mn$
over a CW complex X. We give conditions for the positive integers m and n, and the space X so that
$\mathscr {A}$
can be decomposed as the tensor product of topological Azumaya algebras of degrees m and n. Then we prove that if
$m<n$
and the dimension of X is higher than
$2m+1$
,
$\mathscr {A}$
may not have such decomposition.
Let $k$ be a base commutative ring, $R$ a commutative ring of coefficients, $X$ a quasi-compact quasi-separated $k$-scheme, and $A$ a sheaf of Azumaya algebras over $X$ of rank $r$. Under the assumption that $1/r\in R$, we prove that the noncommutative motives with $R$-coefficients of $X$ and $A$ are isomorphic. As an application, we conclude that a similar
isomorphism holds for every $R$-linear additive invariant. This leads to several computations.
Along the way we show that, in the case of finite-dimensional algebras of finite
global dimension, all additive invariants are nilinvariant.
Let $K$ be the quotient field of a Dedekind domain $R$. We characterize the $R$-orders $\Lambda$ in a separable $K$-algebra for which every $R$-projective $\Lambda$-module decomposes into $\Lambda$-lattices. Butler, Campbell and Kovács have recently shown that the latter holds for the integral group ring of a cyclic group of prime order, as well as for lattice-finite orders over a complete discrete valuation domain.
We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well-known connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one correspondence between decompositions of linearised polynomials and sub-linearised polynomials. This correspondence leads to a formula for the number of indecomposable sub-linearised polynomials of given degree over a finite field. We also show how to extend existing factorisation algorithms over skew-polynomial rings to decompose sub-linearised polynomials without asymptotic cost.
Let $p^m$ be a power of a prime number $p$, $\mathbb{Dacute;_{p^m}$ be the dihedral group of order $2p^m$ and $k$ be a field where $p$ is invertible and containing a primitive $2p^m$-th root of unity. The aim of this paper is computing the Brauer group $BM(k,\mathbb{D}_{p^m},R_z)$ of the group Hopf algebra of $\mathbb{D}_{p^m}$ with respect to the quasi-triangular structure $R_z$ arising from the group Hopf algebra of the cyclic group $\mathbb{Z}_{p^m}$ of order $p^m,$ for $z$ coprime with $p$. The main result states that $BM(k,\mathbb{D}_{p^m},R_z)\cong \mathbb{Z}_2 \times k^{\cdot}/k^{\cdot 2} \times Br(k)$ when $p$ is odd and when $p=2,$$BM(k,\mathbb{D}_{2^m},R_z) \cong \mathbb{Z}_2\times \mathbb{Z}_2 \times k^{\cdot}/k^{\cdot 2} \times k^{\cdot}/k^{\cdot 2} \times Br(k).$
Let $V$ be a commutative valuation domain of arbitrary Krull-dimension, with quotient field $F$, let $K$ be a finite Galois extension of $F$ with group $G$, and let $S$ be the integral closure of $V$ in $K$. Suppose that one has a 2-cocycle on $G$ that takes values in the group of units of $S$. Then one can form the crossed product of $G$ over $S$, $S\ast G$, which is a $V$-order in the central simple $F$-algebra $K\ast G$. If $S\ast G$ is assumed to be a Dubrovin valuation ring of $K\ast G$, then the main result of this paper is that, given a suitable definition of tameness for central simple algebras, $K\ast G$ is tamely ramified and defectless over $F$ if and only if $K$ is tamely ramified and defectless over $F$. The residue structure of $S\ast G$ is also considered in the paper, as well as its behaviour upon passage to Henselization.
We construct a countably infinite family of pairwise non-isomorphic maximal $\mathbb{Q}\left[ X \right]$-orders such that the full 2 by 2 matrix rings over these orders are all isomorphic.
Let $Q$ be a simple Artinian ring with finite dimension over its center. An order $R$ in $Q$ is said to be Prüfer if any one-sided $R$-ideal is a progenerator. We study prime and primary ideals of a Prüfer order under the condition that the center is Prüfer. Also we characterize branched and unbranched prime ideals of a Prüfer order.
In this note, we obtain, in a rather easy way, examples of stably free non-free right ideals. We also give an example of a stably free non-free two-sided ideal in a maximal ℤ-order. These are obtained as applications of a theorem giving necessary and sufficient conditions for H/nH to be a complete 2 x 2 matrix ring, when H is a generalised quaternion ring.
For the trace map on an irreducible semigroup of n × n matrices over a field, I. N. Herstein presented a theorem in [3] which enables us to limit the nature of matrix groups of a certain kind. However, this is incorrect in general. For the theorem, we shall present a counter example, a revision, and some generalizations to non-irreducible semigroups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.