We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tachikawa's second conjecture for symmetric algebras is shown to be equivalent to indecomposable symmetric algebras not having any nontrivial stratifying ideals. The conjecture is also shown to be equivalent to the supremum of stratified ratios being less than $1$, when taken over all indecomposable symmetric algebras. An explicit construction provides a series of counterexamples to Tachikawa's second conjecture from each (potentially existing) gendo-symmetric algebra that is a counterexample to Nakayama's conjecture. The results are based on establishing recollements of derived categories and on constructing new series of algebras.
Let
$\textsf{T}$
be a triangulated category with shift functor
$\Sigma \colon \textsf{T} \to \textsf{T}$
. Suppose
$(\textsf{A},\textsf{B})$
is a co-t-structure with coheart
$\textsf{S} = \Sigma \textsf{A} \cap \textsf{B}$
and extended coheart
$\textsf{C} = \Sigma^2 \textsf{A} \cap \textsf{B} = \textsf{S}* \Sigma \textsf{S}$
, which is an extriangulated category. We show that there is a bijection between co-t-structures
$(\textsf{A}^{\prime},\textsf{B}^{\prime})$
in
$\textsf{T}$
such that
$\textsf{A} \subseteq \textsf{A}^{\prime} \subseteq \Sigma \textsf{A}$
and complete cotorsion pairs in the extended coheart
$\textsf{C}$
. In the case that
$\textsf{T}$
is Hom-finite,
$\textbf{k}$
-linear and Krull–Schmidt, we show further that there is a bijection between complete cotorsion pairs in
$\textsf{C}$
and functorially finite torsion classes in
$\textsf{mod}\, \textsf{S}$
.
This paper gives a description of the full space of Bridgeland stability conditions on the bounded derived category of a contraction algebra associated to a
$3$
-fold flop. The main result is that the stability manifold is the universal cover of a naturally associated hyperplane arrangement, which is known to be simplicial and in special cases is an ADE root system. There are four main corollaries: (1) a short proof of the faithfulness of pure braid group actions in both algebraic and geometric settings, the first that avoid normal forms; (2) a classification of tilting complexes in the derived category of a contraction algebra; (3) contractibility of the stability space associated to the flop; and (4) a new proof of the
$K(\unicode{x3c0} \,,1)$
-theorem in various finite settings, which includes ADE braid groups.
Given a negatively graded Calabi-Yau algebra, we regard it as a DG algebra with vanishing differentials and study its cluster category. We show that this DG algebra is sign-twisted Calabi-Yau and realise its cluster category as a triangulated hull of an orbit category of a derived category and as the singularity category of a finite-dimensional Iwanaga-Gorenstein algebra. Along the way, we give two results that stand on their own. First, we show that the derived category of coherent sheaves over a Calabi-Yau algebra has a natural cluster tilting subcategory whose dimension is determined by the Calabi-Yau dimension and the a-invariant of the algebra. Second, we prove that two DG orbit categories obtained from a DG endofunctor and its homotopy inverse are quasi-equivalent. As an application, we show that the higher cluster category of a higher representation infinite algebra is triangle equivalent to the singularity category of an Iwanaga-Gorenstein algebra, which is explicitly described. Also, we demonstrate that our results generalise the context of Keller–Murfet–Van den Bergh on the derived orbit category involving a square root of the AR translation.
Skew-gentle algebras are a generalisation of the well-known class of gentle algebras with which they share many common properties. In this work, using non-commutative Gröbner basis theory, we show that these algebras are strong Koszul and that the Koszul dual is again skew-gentle. We give a geometric model of their bounded derived categories in terms of polygonal dissections of surfaces with orbifold points, establishing a correspondence between curves in the orbifold and indecomposable objects. Moreover, we show that the orbifold dissections encode homological properties of skew-gentle algebras such as their singularity categories, their Gorenstein dimensions and derived invariants such as the determinant of their q-Cartan matrices.
We introduce an infinite variant of hypersurface support for finite-dimensional, noncommutative complete intersections. We show that hypersurface support defines a support theory for the big singularity category
$\operatorname {Sing}(R)$
, and that the support of an object in
$\operatorname {Sing}(R)$
vanishes if and only if the object itself vanishes. Our work is inspired by Avramov and Buchweitz’ support theory for (commutative) local complete intersections. In the companion piece [27], we employ hypersurface support for infinite-dimensional modules, and the results of the present paper, to classify thick ideals in stable categories for a number of families of finite-dimensional Hopf algebras.
For a finite dimensional algebra A, the bounded homotopy category of projective A-modules and the bounded derived category of A-modules are dual to each other via certain categories of locally-finite cohomological functors. We prove that the duality gives rise to a 2-categorical duality between certain strict 2-categories involving bounded homotopy categories and bounded derived categories, respectively. We apply the 2-categorical duality to the study of triangle autoequivalence groups.
We introduce and study the notion of Gorenstein silting complexes, which is a generalization of Gorenstein tilting modules in Gorenstein-derived categories. We give the equivalent characterization of Gorenstein silting complexes. We give a sufficient condition for a partial Gorenstein silting complex to have a complement.
In representation theory, commutative algebra and algebraic geometry, it is an important problem to understand when the triangulated category $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)=\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a tilting (respectively, silting) object for a $\mathbb{Z}$-graded commutative Gorenstein ring $R=\bigoplus _{i\geqslant 0}R_{i}$. Here $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)$ is the singularity category, and $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ is the stable category of $\mathbb{Z}$-graded Cohen–Macaulay (CM) $R$-modules, which are locally free at all nonmaximal prime ideals of $R$.
In this paper, we give a complete answer to this problem in the case where $\dim R=1$ and $R_{0}$ is a field. We prove that $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ always admits a silting object, and that $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a tilting object if and only if either $R$ is regular or the $a$-invariant of $R$ is nonnegative. Our silting/tilting object will be given explicitly. We also show that if $R$ is reduced and nonregular, then its $a$-invariant is nonnegative and the above tilting object gives a full strong exceptional collection in $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R=\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}R$.
In previous work, based on the work of Zwara and Yoshino, we defined and studied degenerations of objects in triangulated categories analogous to the degeneration of modules. In triangulated categories ${\mathcal{T}}$, it is surprising that the zero object may degenerate. We show that the triangulated subcategory of ${\mathcal{T}}$ generated by the objects that are degenerations of zero coincides with the triangulated subcategory of ${\mathcal{T}}$ consisting of the objects with a vanishing image in the Grothendieck group $K_{0}({\mathcal{T}})$ of ${\mathcal{T}}$.
A duality theorem for the singularity category of a finite dimensional Gorenstein algebra is proved. It complements a duality on the category of perfect complexes, discovered by Happel. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$-local and $\mathfrak{p}$-torsion subcategories of the derived category, for each homogeneous prime ideal $\mathfrak{p}$ arising from the action of a commutative ring via Hochschild cohomology.
We give a complete description of a basis of the extension spaces between indecomposable string and quasi-simple band modules in the module category of a gentle algebra.
We study the derived category of a complete intersection $X$ of bilinear divisors in the orbifold $\operatorname{Sym}^{2}\mathbb{P}(V)$. Our results are in the spirit of Kuznetsov’s theory of homological projective duality, and we describe a homological projective duality relation between $\operatorname{Sym}^{2}\mathbb{P}(V)$ and a category of modules over a sheaf of Clifford algebras on $\mathbb{P}(\operatorname{Sym}^{2}V^{\vee })$. The proof follows a recently developed strategy combining variation of geometric invariant theory (VGIT) stability and categories of global matrix factorisations. We begin by translating $D^{b}(X)$ into a derived category of factorisations on a Landau–Ginzburg (LG) model, and then apply VGIT to obtain a birational LG model. Finally, we interpret the derived factorisation category of the new LG model as a Clifford module category. In some cases we can compute this Clifford module category as the derived category of a variety. As a corollary we get a new proof of a result of Hosono and Takagi, which says that a certain pair of non-birational Calabi–Yau 3-folds have equivalent derived categories.
We prove formulas of different types that allow us to calculate the Gerstenhaber bracket on the Hochschild cohomology of an algebra using some arbitrary projective bimodule resolution for it. Using one of these formulas, we give a new short proof of the derived invariance of the Gerstenhaber algebra structure on Hochschild cohomology. We also give some new formulas for the Connes differential on the Hochschild homology that lead to formulas for the Batalin–Vilkovisky (BV) differential on the Hochschild cohomology in the case of symmetric algebras. Finally, we use one of the obtained formulas to provide a full description of the BV structure and, correspondingly, the Gerstenhaber algebra structure on the Hochschild cohomology of a class of symmetric algebras.
We apply the Auslander–Buchweitz approximation theory to show that the Iyama and Yoshino's subfactor triangulated category can be realized as a triangulated quotient. Applications of this realization go in three directions. Firstly, we recover both a result of Iyama and Yang and a result of the third author. Secondly, we extend the classical Buchweitz's triangle equivalence from Iwanaga–Gorenstein rings to Noetherian rings. Finally, we obtain the converse of Buchweitz's triangle equivalence and a result of Beligiannis, and give characterizations for Iwanaga–Gorenstein rings and Gorenstein algebras.
Entropy of categorical dynamics is defined by Dimitrov–Haiden–Katzarkov–Kontsevich. Motivated by the fundamental theorem of the topological entropy due to Gromov–Yomdin, it is natural to ask an equality between the entropy and the spectral radius of induced morphisms on the numerical Grothendieck group. In this paper, we add two results on this equality: the lower bound in a general setting and the equality for orbifold projective lines.
We introduce the notion of exact tilting objects, which are partial tilting objects $T$ inducing an equivalence between the abelian category generated by $T$ and the category of modules over the endomorphism algebra of $T$. Given a chain of sufficiently negative rational curves on a rational surface, we construct an exceptional sequence whose universal extension is an exact tilting object. For a chain of $(-2)$-curves, we obtain an equivalence with modules over a well-known algebra.
For any ring $R$, we show that, in the bounded derived category ${{D}^{b}}(\text{Mod}\,R)$ of left $R$-modules, the subcategory of complexes with finite Gorenstein projective (resp. injective) dimension modulo the subcategory of complexes with finite projective (resp. injective) dimension is equivalent to the stable category $\underline{\text{GP}}(\text{Mod}\,R)\,(resp.\overline{GI}(Mod\,R))$ of Gorenstein projective (resp. injective) modules. As a consequence, we get that if $R$ is a left and right noetherian ring admitting a dualizing complex, then $\underline{\text{GP}}(\text{Mod}\,R)$ and $\overline{\text{GI}}(\text{Mod}\,R)$ are equivalent.
We present a calculus that is well-adapted to homogeneous quadratic algebras. We define this calculus on Koszul cohomology – resp. homology – by cup products – resp. cap products. The Koszul homology and cohomology are interpreted in terms of derived categories. If the algebra is not Koszul, then Koszul (co)homology provides different information than Hochschild (co)homology. As an application of our calculus, the Koszul duality for Koszul cohomology algebras is proved for any quadratic algebra, and this duality is extended in some sense to Koszul homology. So, the true nature of the Koszul duality theorem is independent of any assumption on the quadratic algebra. We compute explicitly this calculus on a non-Koszul example.
In this paper we study categories ${\mathcal{O}}$ over quantizations of symplectic resolutions admitting Hamiltonian tori actions with finitely many fixed points. In this generality, these categories were introduced by Braden et al. We establish a family of standardly stratified structures (in the sense of the author and Webster) on these categories ${\mathcal{O}}$. We use these structures to study shuffling functors of Braden et al. (called cross-walling functors in this paper). Most importantly, we prove that all cross-walling functors are derived equivalences that define an action of the Deligne groupoid of a suitable real hyperplane arrangement.