We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a formula expressing the K-theoretic log Gromov-Witten invariants of a product of log smooth varieties $V \times W$ in terms of the invariants of V and W. The proof requires introducing log virtual fundamental classes in K-theory and verifying their various functorial properties. We introduce a log version of K-theory and prove the formula there as well.
Let $X/{\mathbb C}$ be a smooth projective variety. We consider two integral invariants, one of which is the level of the Hodge cohomology algebra $H^*(X,{\mathbb C})$ and the other involving the complexity of the higher Chow groups ${\mathrm {CH}}^*(X,m;{\mathbb Q})$ for $m\geq 0$. We conjecture that these two invariants are the same and accordingly provide some strong evidence in support of this.
We introduce a weak Lefschetz-type result on Chow groups of complete intersections. As an application, we can reproduce some of the results in [P]. The purpose of this paper is not to reproduce all of [P] but rather illustrate why the aforementioned weak Lefschetz result is an interesting idea worth exploiting in itself. We hope the reader agrees.
In [12], Kim and the first author proved a result comparing the virtual fundamental classes of the moduli spaces of
$\varepsilon $
-stable quasimaps and
$\varepsilon $
-stable
$LG$
-quasimaps by studying localized Chern characters for
$2$
-periodic complexes.
In this paper, we study a K-theoretic analogue of the localized Chern character map and show that for a Koszul
$2$
-periodic complex it coincides with the cosection-localized Gysin map of Kiem and Li [11]. As an application, we compare the virtual structure sheaves of the moduli space of
$\varepsilon $
-stable quasimaps and
$\varepsilon $
-stable
$LG$
-quasimaps.
Almost perfect obstruction theories were introduced in an earlier paper by the authors as the appropriate notion in order to define virtual structure sheaves and K-theoretic invariants for many moduli stacks of interest, including K-theoretic Donaldson-Thomas invariants of sheaves and complexes on Calabi-Yau threefolds. The construction of virtual structure sheaves is based on the K-theory and Gysin maps of sheaf stacks.
In this paper, we generalize the virtual torus localization and cosection localization formulas and their combination to the setting of almost perfect obstruction theory. To this end, we further investigate the K-theory of sheaf stacks and its functoriality properties. As applications of the localization formulas, we establish a K-theoretic wall-crossing formula for simple
$\mathbb{C} ^\ast $
-wall crossings and define K-theoretic invariants refining the Jiang-Thomas virtual signed Euler characteristics.
The purpose of this note is to establish isomorphisms up to bounded torsion between relative $K_{0}$-groups and Chow groups with modulus as defined by Binda and Saito.
In this paper, we construct Chern classes from the relative $K$-theory of modulus pairs to the relative motivic cohomology defined by Binda–Saito. An application to relative motivic cohomology of henselian dvr is given.
We produce an isomorphism $E_{\infty }^{m,-m-1}\cong \text{Nrd}_{1}(A^{\otimes m})$ between terms of the $\text{K}$-theory coniveau spectral sequence of a Severi–Brauer variety $X$ associated with a central simple algebra $A$ and a reduced norm group, assuming $A$ has equal index and exponent over all finite extensions of its center and that $\text{SK}_{1}(A^{\otimes i})=1$ for all $i>0$.
Let (A, ) be a local hypersurface with an isolated singularity. We show that Hochster's theta pairing θA vanishes on elements that are numerically equivalent to zero in the Grothendieck group of A under the mild assumption that Spec A admits a resolution of singularities. This extends a result by Celikbas-Walker. We also prove that when dimA = 3, Hochster's theta pairing is positive semi-definite. These results combine to show that the counter-example of Dutta-Hochster-McLaughlin to the general vanishing of Serre's intersection multiplicity exists for any three dimensional isolated hypersurface singularity that is not a UFD and has a desingularization. We also show that, if A is three dimensional isolated hypersurface singularity that has a desingularization, the divisor class group is finitely generated torsion-free. Our method involves showing that θA gives a bivariant class for the morphism Spec (A/) → Spec A.
Let X be a smooth projective variety over a finite field . We discuss the unramified cohomology group H3nr(X, ℚ/ℤ(2)). Several conjectures put together imply that this group is finite. For certain classes of threefolds, H3nr(X, ℚ/ℤ(2)) actually vanishes. It is an open question whether this holds for arbitrary threefolds. For a threefold X equipped with a fibration onto a curve C, the generic fibre of which is a smooth projective surface V over the global field (C), the vanishing of H3nr(X, ℚ/ℤ(2)) together with the Tate conjecture for divisors on X implies a local-global principle of Brauer–Manin type for the Chow group of zero-cycles on V. This sheds new light on work started thirty years ago.
We show that the limit of a one-parameter admissible normal function with no singularities lies in a non-classical sub-object of the limiting intermediate Jacobian. Using this, we construct a Hausdorff slit analytic space, with complex Lie group fibres, which ‘graphs’ such normal functions. For singular normal functions, an extension of the sub-object by a finite group leads to the Néron models. When the normal function comes from geometry, that is, a family of algebraic cycles on a semistably degenerating family of varieties, its limit may be interpreted via the Abel–Jacobi map on motivic cohomology of the singular fibre, hence via regulators on K-groups of its substrata. Two examples are worked out in detail, for families of 1-cycles on CY and abelian 3-folds, where this produces interesting arithmetic constraints on such limits. We also show how to compute the finite ‘singularity group’ in the geometric setting.
We construct a map between Bloch's higher Chow groups and Deligne homology for smooth, complex quasiprojective varieties on the level of complexes. For complex projective varieties this results in a formula which generalizes at the same time the classical Griffiths Abel–Jacobi map and the Borel/Beilinson/Goncharov regulator type maps.
We prove two results about vector bundles on singular algebraic surfaces. First, on proper surfaces there are vector bundles of rank two with arbitrarily large second Chern number and fixed determinant. Second, on separated normal surfaces any coherent sheaf is the quotient of a vector bundle. As a consequence, for such surfaces the Quillen K-theory of vector bundles coincides with the Waldhausen K-theory of perfect complexes. Examples show that, on non-separated schemes, usually many coherent sheaves are not quotients of vector bundles.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.