We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study intermediate-scale statistics for the fractional parts of the sequence $\left(\alpha a_{n}\right)_{n=1}^{\infty}$, where $\left(a_{n}\right)_{n=1}^{\infty}$ is a positive, real-valued lacunary sequence, and $\alpha\in\mathbb{R}$. In particular, we consider the number of elements $S_{N}\!\left(L,\alpha\right)$ in a random interval of length $L/N$, where $L=O\!\left(N^{1-\epsilon}\right)$, and show that its variance (the number variance) is asymptotic to L with high probability w.r.t. $\alpha$, which is in agreement with the statistics of uniform i.i.d. random points in the unit interval. In addition, we show that the same asymptotic holds almost surely in $\alpha\in\mathbb{R}$ when $L=O\!\left(N^{1/2-\epsilon}\right)$. For slowly growing L, we further prove a central limit theorem for $S_{N}\!\left(L,\alpha\right)$ which holds for almost all $\alpha\in\mathbb{R}$.
We investigate the distribution of the digits of quotients of randomly chosen positive integers taken from the interval
$[1,T]$
, improving the previously known error term for the counting function as
$T\to +\infty $
. We also resolve some natural variants of the problem concerning points with prime coordinates and points that are visible from the origin.
Let
$a_1$
,
$a_2$
, and
$a_3$
be distinct reduced residues modulo q satisfying the congruences
$a_1^2 \equiv a_2^2 \equiv a_3^2 \ (\mathrm{mod}\ q)$
. We conditionally derive an asymptotic formula, with an error term that has a power savings in q, for the logarithmic density of the set of real numbers x for which
$\pi (x;q,a_1)> \pi (x;q,a_2) > \pi (x;q,a_3)$
. The relationship among the
$a_i$
allows us to normalize the error terms for the
$\pi (x;q,a_i)$
in an atypical way that creates mutual independence among their distributions, and also allows for a proof technique that uses only elementary tools from probability.
We show that the sequence of integers which have nearly the typical number of distinct prime factors forms a Poisson process. More precisely, for $\delta$
arbitrarily small and positive, the nearest neighbor spacings between integers $n$ with $\left| \omega \left( n \right)\,-\,\log \log n \right|\,<\,{{\left( \log \log n \right)}^{\delta }}$ obey the Poisson distribution law.
We provide a new probabilistic explanation for the appearance of Benford's law in everyday-life numbers, by showing that it arises naturally when we consider mixtures of uniform distributions. Then we connect our result to a result of Flehinger, for which we provide a shorter proof and the speed of convergence.
Let $a$ be a natural number greater than 1. Let ${{f}_{a}}\left( n \right)$ be the order of $a\,\bmod \,n$. Denote by $\omega \left( n \right)$ the number of distinct prime factors of $n$. Assuming a weak form of the generalised Riemann hypothesis, we prove the following conjecture of Erdös and Pomerance:
The number of $n\,\le \,x$ coprime to a satisfying
is asymptotic to
$\left( \frac{1}{\sqrt{2\pi }}\int_{\alpha }^{\beta }{{{e}^{-{{t}^{2}}/2}}}dt \right)\frac{x\phi \left( a \right)}{a}$
as $x$ tends to infinity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.