We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For every group G, the set $\mathcal {P}(G)$ of its subsets forms a semiring under set-theoretical union $\cup $ and element-wise multiplication $\cdot $, and forms an involution semigroup under $\cdot $ and element-wise inversion ${}^{-1}$. We show that if the group G is finite, non-Dedekind, and solvable, neither the semiring $(\mathcal {P}(G),\cup ,\cdot )$ nor the involution semigroup $(\mathcal {P}(G),\cdot ,{}^{-1})$ admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.
A logic is said to admit an equational completeness theorem when it can be interpreted into the equational consequence relative to some class of algebras. We characterize logics admitting an equational completeness theorem that are either locally tabular or have some tautology. In particular, it is shown that a protoalgebraic logic admits an equational completeness theorem precisely when it has two distinct logically equivalent formulas. While the problem of determining whether a logic admits an equational completeness theorem is shown to be decidable both for logics presented by a finite set of finite matrices and for locally tabular logics presented by a finite Hilbert calculus, it becomes undecidable for arbitrary logics presented by finite Hilbert calculi.
A Leibniz class is a class of logics closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products of sets of logics. We study the complete lattice of all Leibniz classes, called the Leibniz hierarchy. In particular, it is proved that the classes of truth-equational and assertional logics are meet-prime in the Leibniz hierarchy, while the classes of protoalgebraic and equivalential logics are meet-reducible. However, the last two classes are shown to be determined by Leibniz conditions consisting of meet-prime logics only.
A notion of interpretation between arbitrary logics is introduced, and the poset
$\mathsf {Log}$
of all logics ordered under interpretability is studied. It is shown that in
$\mathsf {Log}$
infima of arbitrarily large sets exist, but binary suprema in general do not. On the other hand, the existence of suprema of sets of equivalential logics is established. The relations between
$\mathsf {Log}$
and the lattice of interpretability types of varieties are investigated.
Meet semidistributive varieties are in a sense the last of the most important classes in universal algebra for which it is unknown whether it can be characterized by a strong Maltsev condition. We present a new, relatively simple Maltsev condition characterizing the meet-semidistributive varieties, and provide a candidate for a strong Maltsev condition.
We address the question of the dualizability of nilpotent Mal’cev algebras, showing that nilpotent finite Mal’cev algebras with a nonabelian supernilpotent congruence are inherently nondualizable. In particular, finite nilpotent nonabelian Mal’cev algebras of finite type are nondualizable if they are direct products of algebras of prime power order. We show that these results cannot be generalized to nilpotent algebras by giving an example of a group expansion of infinite type that is nilpotent and nonabelian, but dualizable. To our knowledge this is the first construction of a nonabelian nilpotent dualizable algebra. It has the curious property that all its nonabelian finitary reducts with group operation are nondualizable. We were able to prove dualizability by utilizing a new clone theoretic approach developed by Davey, Pitkethly, and Willard. Our results suggest that supernilpotence plays an important role in characterizing dualizability among Mal’cev algebras.
We show that every finite, finitely related algebra in a congruence distributive variety has a near unanimity term operation. As a consequence we solve the near unanimity problem for relational structures: it is decidable whether a given finite set of relations on a finite set admits a compatible near unanimity operation. This consequence also implies that it is decidable whether a given finite constraint language defines a constraint satisfaction problem of bounded strict width.
We prove that if a finite algebra $\mathbf{A}$ generates a congruence distributive variety, then the subalgebras of the powers of $\mathbf{A}$ satisfy a certain kind of intersection property that fails for finite idempotent algebras that locally exhibit affine or unary behaviour. We demonstrate a connection between this property and the constraint satisfaction problem.
We provide more characterizations of varieties with a weak difference term and of neutral varieties. We prove that a variety has a (weak) difference term (is neutral) with respect to the $\text{TC}$-commutator iff it has a (weak) difference term (is neutral) with respect to the linear commutator. We show that a variety $V$ is congruence meet semi-distributive iff $V$ is neutral, iff ${{M}_{3}}$ is not a sublattice of Con $\mathbf{A}$, for $\mathbf{A}\in V$, iff there is a positive integer $n$ such that $V{{\vDash }_{Con}}\alpha (\beta \,o\,\gamma )\le \alpha {{\beta }_{n}}$.
We characterize, by means of congruence identities, all varieties having a weak difference term, and all neutral varieties. Our characterization of varieties with a difference term is new even in the particular case of locally finite varieties.
We prove that an inherently nonfinitely based algebra cannot generate an abelian variety. On the other hand, we show by example that it is possible for an inherently nonfinitely based algebra to generate a strongly solvable variety.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.