We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove an isomorphism theorem between the canonical denotation systems for large natural numbers and large countable ordinal numbers, linking two fundamental concepts in Proof Theory. The first one is fast-growing hierarchies. These are sequences of functions on $\mathbb {N}$ obtained through processes such as the ones that yield multiplication from addition, exponentiation from multiplication, etc. and represent the canonical way of speaking about large finite numbers. The second one is ordinal collapsing functions, which represent the best-known method of describing large computable ordinals.
We observe that fast-growing hierarchies can be naturally extended to functors on the categories of natural numbers and of linear orders. The isomorphism theorem asserts that the categorical extensions of binary fast-growing hierarchies to ordinals are isomorphic to denotation systems given by cardinal collapsing functions. As an application of this fact, we obtain a restatement of the subsystem $\Pi ^1_1$-${\mathsf {CA_0}}$ of analysis as a higher-type well-ordering principle asserting that binary fast-growing hierarchies preserve well-foundedness.
The notion of countable well order admits an alternative definition in terms of embeddings between initial segments. We use the framework of reverse mathematics to investigate the logical strength of this definition and its connection with Fraïssé’s conjecture, which has been proved by Laver. We also fill a small gap in Shore’s proof that Fraïssé’s conjecture implies arithmetic transfinite recursion over $\mathbf {RCA}_0$, by giving a new proof of $\Sigma ^0_2$-induction.
We present an analogue of Gödel’s second incompleteness theorem for systems of second-order arithmetic. Whereas Gödel showed that sufficiently strong theories that are $\Pi ^0_1$-sound and $\Sigma ^0_1$-definable do not prove their own $\Pi ^0_1$-soundness, we prove that sufficiently strong theories that are $\Pi ^1_1$-sound and $\Sigma ^1_1$-definable do not prove their own $\Pi ^1_1$-soundness. Our proof does not involve the construction of a self-referential sentence but rather relies on ordinal analysis.
We introduce the computable FS-jump, an analog of the classical Friedman–Stanley jump in the context of equivalence relations on the natural numbers. We prove that the computable FS-jump is proper with respect to computable reducibility. We then study the effect of the computable FS-jump on computably enumerable equivalence relations (ceers).
Following our [6], though with somewhat different methods here, further variants of Goodstein sequences are introduced in terms of parameterized Ackermann–Péter functions. Each of the sequences is shown to terminate, and the proof-theoretic strengths of these facts are calibrated by means of ordinal assignments, yielding independence results for a range of theories: PRA, PA,
$\Sigma ^1_1$
-DC
$_0$
, ATR
$_0$
, up to ID
$_1$
. The key is the so-called “Hardy hierarchy” of proof-theoretic bounding finctions, providing a uniform method for associating Goodstein-type sequences with parameterized normal form representations of positive integers.
In previous work, the author has shown that
$\Pi ^1_1$
-induction along
$\mathbb N$
is equivalent to a suitable formalization of the statement that every normal function on the ordinals has a fixed point. More precisely, this was proved for a representation of normal functions in terms of Girard’s dilators, which are particularly uniform transformations of well orders. The present paper works on the next type level and considers uniform transformations of dilators, which are called 2-ptykes. We show that
$\Pi ^1_2$
-induction along
$\mathbb N$
is equivalent to the existence of fixed points for all 2-ptykes that satisfy a certain normality condition. Beyond this specific result, the paper paves the way for the analysis of further
$\Pi ^1_4$
-statements in terms of well ordering principles.
It is well-known that natural axiomatic theories are well-ordered by consistency strength. However, it is possible to construct descending chains of artificial theories with respect to consistency strength. We provide an explanation of this well-orderedness phenomenon by studying a coarsening of the consistency strength order, namely, the
$\Pi ^1_1$
reflection strength order. We prove that there are no descending sequences of
$\Pi ^1_1$
sound extensions of
$\mathsf {ACA}_0$
in this ordering. Accordingly, we can attach a rank in this order, which we call reflection rank, to any
$\Pi ^1_1$
sound extension of
$\mathsf {ACA}_0$
. We prove that for any
$\Pi ^1_1$
sound theory T extending
$\mathsf {ACA}_0^+$
, the reflection rank of T equals the
$\Pi ^1_1$
proof-theoretic ordinal of T. We also prove that the
$\Pi ^1_1$
proof-theoretic ordinal of
$\alpha $
iterated
$\Pi ^1_1$
reflection is
$\varepsilon _\alpha $
. Finally, we use our results to provide straightforward well-foundedness proofs of ordinal notation systems based on reflection principles.
In a recent paper by M. Rathjen and the present author it has been shown that the statement “every normal function has a derivative” is equivalent to
$\Pi ^1_1$
-bar induction. The equivalence was proved over
$\mathbf {ACA_0}$
, for a suitable representation of normal functions in terms of dilators. In the present paper, we show that the statement “every normal function has at least one fixed point” is equivalent to
$\Pi ^1_1$
-induction along the natural numbers.
We show that arithmetical transfinite recursion is equivalent to a suitable formalization of the following: For every ordinal α there exists an ordinal β such that $1 + \beta \cdot \left( {\beta + \alpha } \right)$ (ordinal arithmetic) admits an almost order preserving collapse into β. Arithmetical comprehension is equivalent to a statement of the same form, with $\beta \cdot \alpha$ at the place of $\beta \cdot \left( {\beta + \alpha } \right)$. We will also characterize the principles that any set is contained in a countable coded ω-model of arithmetical transfinite recursion and arithmetical comprehension, respectively.
We determine the proof-theoretic ordinals (i) of ${\cal C} - {\bf{TI}}[\alpha ]$, the transfinite induction along α, for any hyperarithmetical level ${\cal C}$, in the first order setting and (ii) of any combination of iterated arithmetical comprehension and ${\cal C} - {\bf{TI}}[\alpha ]$ for ${\cal C}\, \equiv \,{\rm{\Pi }}_k^i ,{\rm{\Sigma }}_k^i$ ($i\, = \,0,1$) in the second order setting.
Given a scattered space $\mathfrak{X} = \left( {X,\tau } \right)$ and an ordinal λ, we define a topology $\tau _{ + \lambda } $ in such a way that τ+0 = τ and, when $\mathfrak{X}$ is an ordinal with the initial segment topology, the resulting sequence {τ+λ}λ∈Ord coincides with the family of topologies $\left\{ {\mathcal{I}_\lambda } \right\}_{\lambda \in Ord} $ used by Icard, Joosten, and the second author to provide semantics for polymodal provability logics.
We prove that given any scattered space $\mathfrak{X}$ of large-enough rank and any ordinal λ > 0, GL is strongly complete for τ+λ. The special case where $\mathfrak{X} = \omega ^\omega + 1$ and λ = 1 yields a strengthening of a theorem of Abashidze and Blass.
Let S be the group of finitely supported permutations of a countably infinite set. Let $K[S]$ be the group algebra of S over a field K of characteristic 0. According to a theorem of Formanek and Lawrence, $K[S]$ satisfies the ascending chain condition for two-sided ideals. We study the reverse mathematics of this theorem, proving its equivalence over $RC{A_0}$ (or even over $RCA_0^{\rm{*}}$) to the statement that ${\omega ^\omega }$ is well ordered. Our equivalence proof proceeds via the statement that the Young diagrams form a well partial ordering.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.