We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that if $A$ and $H$ are Hopf algebras that have equivalent tensor categories of comodules, then one can transport what we call a free Yetter–Drinfeld resolution of the counit of $A$ to the same kind of resolution for the counit of $H$, exhibiting in this way strong links between the Hochschild homologies of $A$ and $H$. This enables us to obtain a finite free resolution of the counit of $\mathcal {B}(E)$, the Hopf algebra of the bilinear form associated with an invertible matrix $E$, generalizing an earlier construction of Collins, Härtel and Thom in the orthogonal case $E=I_n$. It follows that $\mathcal {B}(E)$ is smooth of dimension 3 and satisfies Poincaré duality. Combining this with results of Vergnioux, it also follows that when $E$ is an antisymmetric matrix, the $L^2$-Betti numbers of the associated discrete quantum group all vanish. We also use our resolution to compute the bialgebra cohomology of $\mathcal {B}(E)$in the cosemisimple case.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.