We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Anhedonia, a transdiagnostic feature common to both Major Depressive Disorder (MDD) and Schizophrenia (SCZ), is characterized by abnormalities in hedonic experience. Previous studies have used machine learning (ML) algorithms without focusing on disorder-specific characteristics to independently classify SCZ and MDD. This study aimed to classify MDD and SCZ using ML models that integrate components of hedonic processing.
Methods
We recruited 99 patients with MDD, 100 patients with SCZ, and 113 healthy controls (HC) from four sites. The patient groups were allocated to distinct training and testing datasets. All participants completed a modified Monetary Incentive Delay (MID) task, which yielded features categorized into five hedonic components, two reward consequences, and three reward magnitudes. We employed a stacking ensemble model with SHapley Additive exPlanations (SHAP) values to identify key features distinguishing MDD, SCZ, and HC across binary and multi-class classifications.
Results
The stacking model demonstrated high classification accuracy, with Area Under the Curve (AUC) values of 96.08% (MDD versus HC) and 91.77% (SCZ versus HC) in the main dataset. However, the MDD versus SCZ classification had an AUC of 57.75%. The motivation reward component, loss reward consequence, and high reward magnitude were the most influential features within respective categories for distinguishing both MDD and SCZ from HC (p < 0.001). A refined model using only the top eight features maintained robust performance, achieving AUCs of 96.06% (MDD versus HC) and 95.18% (SCZ versus HC).
Conclusion
The stacking model effectively classified SCZ and MDD from HC, contributing to understanding transdiagnostic mechanisms of anhedonia.
A new fossil of Lycidae, Domipteron gaoi n. gen. n. sp., is described from Miocene Dominican amber. The fossil exhibits a combination of characteristics found in both Calopterini and Eurrhacini. To determine its systematic placement, we conducted phylogenetic analyses based on adult morphological features. Our analyses indicate that the new fossil belongs to Calopterini.
Triceps skinfold thickness (TSF) is a surrogate marker of subcutaneous fat. Evidence is limited about the association of sex-specific TSF with the risk of all-cause mortality among maintenance hemodialysis (MHD) patients. We aimed to investigate the longitudinal relationship of TSF with all-cause mortality among MHD patients. A multicenter prospective cohort study was performed in 1034 patients undergoing MHD. The primary outcome was all-cause mortality. Multivariable Cox proportional hazards models were used to evaluate the association of TSF with the risk of mortality. The mean (standard deviation) age of the study population was 54.1 (15.1) years. 599 (57.9%) of the participants were male. The median (interquartile range) of TSF was 9.7 (6.3–13.3 mm) in males and 12.7 (10.0–18.0 mm) in females. Over a median follow up of 4.4 years (interquartile range, 2.4-7.9 years), there were 548 (53.0%) deaths. When TSF was assessed as sex-specific quartiles, compared with those in quartile 1, the adjusted HRs (95%CIs) of all-cause mortality in quartile 2, quartile 3 and quartile 4 were 0.93 (0.73, 1.19), 0.75 (0.58, 0.97) and 0.69 (0.52, 0.92), respectively (P for trend =0.005). Moreover, when analyzed by sex, increased TSF (≥9.7 mm for males and ≥18mm for females) was significantly associated with a reduced risk of all-cause mortality (quartile 3-4 vs. quartile 1-2; HR, 0.70; 95%CI: 0.55, 0.90 in males; quartile 4 vs. Quartile 1-3; HR, 0.69; 95%CI: 0.48, 1.00 in females). In conclusion, high TSF was significantly associated with lower risk of all-cause mortality in MHD patients.
We revisit the communication primitive in ambient calculi. Previously, such communication was confined to first-order (FO) mode (e.g., merely names or capabilities of ambients can be sent), local mode (e.g., the communication only occurs inside an ambient), or particular cross-hierarchy mode (e.g., parent-child communication). In this work, we explore further higher-order (HO) communication in ambient calculi. Specifically, such a communication mechanism allows sending a whole piece of a program across the borders of ambients and is the only form of communication that can happen exactly between ambients. Since ambients are basically of HO nature (i.e., those being moved may be ambients themselves), in a sense, it appears more natural to have HO communication than FO communication. We stipulate that communications merely occur between equally positioned ambients in a peer-to-peer fashion (e.g., between sibling ambients). Following this line, we drop the local or other forms of communication that violate this criterion. As the workbench, we work on a variant of Fair Ambients extended with HO communication, FAHO. This variant also strengthens the original version in that entirely real-identity interaction is guaranteed. We study the semantics, bisimulation, and expressiveness of FAHO. Particularly, we provide the operational semantics using a labeled transition system. Over the semantics, we define the bisimulation in line with the standard notion of bisimulation for ambients and prove that the bisimulation equivalence (i.e., bisimilarity) is a congruence. In addition, we demonstrate that bisimilarity coincides with observational congruence (i.e., barbed congruence). Moreover, we show that FAHO can encode a minimal Turing-complete HO calculus and thus is computationally complete.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
In recent years, the rapid convergence of artificial intelligence (AI) and low-altitude flight technology has driven significant transformations across various industries. These advancements have showcased immense potential in areas such as logistics distribution, urban air mobility (UAM) and national defense. By adopting the AI technology, low-altitude flight technology can achieve high levels of automation and operate in coordinated swarms, thereby enhancing efficiency and precision. However, as these technologies become more pervasive, they also raise pressing ethical or moral concerns, particularly regarding privacy, public safety, as well as the risks of militarisation and weaponisation. These issues have sparked extensive debates. In summary, while the integration of AI and low-altitude flight presents revolutionary opportunities, it also introduces complex ethical challenges. This article will explore these opportunities and challenges in depth, focusing on areas such as privacy protection, public safety, military applications and legal regulation, and will propose strategies to ensure that technological advancements remain aligned with ethical or moral principles.
Using the syntactic priming paradigm, this study investigated abstract syntactic knowledge of Chinese transitive structures (i.e., subject-verb-object [SVO], BA, and BEI) in deaf children with cochlear implants (CIs). Specifically, we focused on the differences in the development of various syntactic structures (within CI children and compared with their typically hearing children) and the possible individual differences during this process. Results showed that both CI and hearing children exhibited structural priming for all syntactic structures (i.e., SVO, SbaOV structure [agent-patient ordering], and ObeiSV structure [patient-agent ordering]) after comprehending and repeating the prime sentence regardless of verb repetition. However, verb repetition induced an intense abstract priming effect in CI children but not hearing children, with the lexical boost effect more significant for SVO and BA structures. In addition, CI children’s working memory capability modulated the production of the BA structure but not SVO and BEI structures.
The school–vacation cycle may have impacts on the psychological states of adolescents. However, little evidence illustrates how transition from school to vacation impacts students’ psychological states (e.g. depression and anxiety).
Aims
To explore the changing patterns of depression and anxiety symptoms among adolescent students within a school–vacation transition and to provide insights for prevention or intervention targets.
Method
Social demographic data and depression and anxiety symptoms were measured from 1380 adolescent students during the school year (age: 13.8 ± 0.88) and 1100 students during the summer vacation (age: 14.2 ± 0.93) in China. Multilevel mixed-effect models were used to examine the changes in depression and anxiety levels and the associated influencing factors. Network analysis was used to explore the symptom network structures of depression and anxiety during school and vacation.
Results
Depression and anxiety symptoms significantly decreased during the vacation compared to the school period. Being female, higher age and with lower mother's educational level were identified as longitudinal risk factors. Interaction effects were found between group (school versus vacation) and the father's educational level as well as grade. Network analyses demonstrated that the anxiety symptoms, including ‘Nervous’, ‘Control worry’ and ‘Relax’ were the most central symptoms at both times. Psychomotor disturbance, including ‘Restless’, ‘Nervous’ and ‘Motor’, bridged depression and anxiety symptoms. The central and bridge symptoms showed variation across the school vacation.
Conclusions
The school–vacation transition had an impact on students’ depression and anxiety symptoms. Prevention and intervention strategies for adolescents’ depression and anxiety during school and vacation periods should be differentially developed.
Attention-deficit/hyperactivity disorder (ADHD) patients exhibit characteristics of impaired working memory (WM) and diminished sensory processing function. This study aimed to identify the neurophysiologic basis underlying the association between visual WM and auditory processing function in children with ADHD.
Methods
The participants included 86 children with ADHD (aged 6–15 years, mean age 9.66 years, 70 boys, and 16 girls) and 90 typically developing (TD) children (aged 7–16 years, mean age 10.30 years, 66 boys, and 24 girls). Electroencephalograms were recorded from all participants while they performed an auditory discrimination task (oddball task). The visual WM capacity and ADHD symptom severity were measured for all participants.
Results
Compared with TD children, children with ADHD presented a poorer visual WM capacity and a smaller mismatch negativity (MMN) amplitude. Notably, the smaller MMN amplitude in children with ADHD predicted a less impaired WM capacity and milder inattention symptom severity. In contrast, the larger MMN amplitude in TD children predicted a better visual WM capacity.
Conclusions
Our results suggest an intimate relationship and potential shared mechanism between visual WM and auditory processing function. We liken this shared mechanism to a total cognitive resource limit that varies between groups of children, which could drive correlated individual differences in auditory processing function and visual WM. Our findings provide a neurophysiological correlate for reports of WM deficits in ADHD patients and indicate potential effective markers for clinical intervention.
The emerging era of big data in radio astronomy demands more efficient and higher-quality processing of observational data. While deep learning methods have been applied to tasks such as automatic radio frequency interference (RFI) detection, these methods often face limitations, including dependence on training data and poor generalisation, which are also common issues in other deep learning applications within astronomy. In this study, we investigate the use of the open-source image recognition and segmentation model, Segment Anything Model (SAM), and its optimised version, HQ-SAM, due to their impressive generalisation capabilities. We evaluate these models across various tasks, including RFI detection and solar radio burst (SRB) identification. For RFI detection, HQ-SAM (SAM) shows performance that is comparable to or even superior to the SumThreshold method, especially with large-area broadband RFI data. In the search for SRBs, HQ-SAM demonstrates strong recognition abilities for Type II and Type III bursts. Overall, with its impressive generalisation capability, SAM (HQ-SAM) can be a promising candidate for further optimisation and application in RFI and event detection tasks in radio astronomy.
The immediate priorities for high-power delivery employing solid-core fibers are balancing the nonlinear effect and beam deterioration. Here, the scheme of tapered multimode fiber is experimentally realized. The tapered multimode fiber, featuring a 15 m (24/200 μm)–10 m (tapered region)–80 m (48/400 μm) profile, guides the laser with a weakly coupled condition. With the input power of 1035 W, the maximum output power over the 105 m delivery is 962 W, corresponding to a high efficiency of over 93% and a nonlinear suppression ratio of over 50 dB. Mode resolving results show high-order-mode contents of less than –30 dB in the whole delivery path, resulting in a high-fidelity delivery with M2 factors of 1.20 and 1.23 for the input and output lasers, respectively. Furthermore, the ultimate limits of delivery lengths for solid-core weakly coupled fibers are discussed. This work provides a valuable reference to reconsider the future boom of high-power laser delivery based on solid-core fibers.
Background: Mild behavioral impairment (MBI) in older people refers to a group of syndromes that are characterized primarily by clusters of neuropsychiatric symptoms without severe cognitive impairment, which is a high-risk population for dementia. Patients often experience a variety of symptoms and exhibit high heterogeneity in symptomatology across different individuals. Classifying the psychotic symptom characteristics of MBI patients aids in the implementation of precise interventions for the next steps.
Objectives: To explore the symptom characteristics of older people with MBI and to classify them based on their symptoms.
Methods: Using a multi-stage sampling Methods, the MBI-Checklist was employed to investigate symptom characteristics in 255 older people with MBI from 32 nursing homes in Fujian Province. Latent Class Analysis (LCA) was then employed to categorize these individuals based on their symptom profiles.
Results: The neuropsychiatric symptoms clusters in older people with MBI often present as a combination of lack of motivation and emotional dysregulation, lack of motivation and impulse control disorders, or emotional dysregulation and impulse control disorders; presentation of a single symptom cluster is relatively less common, accounting for 45.49%. Older people with MBI can be divided into 2 latent classes (P < 0.05) based on symptom characteristics. According to the conditional probability of each class, they were named the “high- level group’’ [211 (82.69%)] and the “low-level group’’[44 (17.31%)].
Discussion: As individuals with MBI are at high risk for developing dementia, early intervention can effectively delay or reduce the occurrence of dementia. Future interventions should be personalized based on the specific symptom characteristics of this population.
To understand the dietary patterns of adults and explore their association with iodine nutritional levels and thyroid function in adults.
Design:
We randomly collected 5 ml of adult urine samples and measured urinary iodine concentration (UIC) by cerium arsenate-catalysed spectrophotometry. A serum sample of 5 ml was collected for the determination of free triiodothyronine, free thyroxine and thyrotropin, and diet-related information was collected through a FFQ. Dietary patterns were extracted by principal component analysis, and the relationship between dietary patterns and iodine nutrition levels and thyroid function was explored.
Settings:
A cross-sectional study involving adults in Xinjiang, China, was conducted.
Participants:
A total of 435 adults were enrolled in the study.
Results:
The overall median urinary iodine of the 435 respondents was 219·73 μg/l. The dietary patterns were PCA1 (staple food pattern), PCA2 (fruit, vegetable and meat pattern), PCA3 (fish, shrimp and legume pattern) and PCA4 (dairy-based protein pattern). The correlation analyses showed that PCA1 and PCA3 were positively correlated with the UIC. The results of the multivariable analysis showed that PCA1, Q1, Q2 and Q3 were associated with an increased risk of iodine deficiency compared with Q4 ((OR): 260·41 (95 % CI: 20·16, 663·70)), 59·89 (5·64, 335·81), and 2·01 (0·15, 26·16), respectively). In PCA2, Q3 was associated with an increased risk of iodine deficiency compared with Q4 (OR: 0·16 (0·05, 0·53)). In PCA3, Q3 was associated with an increased risk of iodine deficiency compared with Q4 (OR: 0·23 (0·06, 0·90)). In PCA4, Q1 was associated with an increased risk of iodine deficiency compared with Q4 (OR: 31·30 (4·88, 200·64)).
Conclusion:
This study demonstrated that of the four dietary patterns, the least dependent staple food pattern (Q1) had a higher risk of iodine deficiency compared with the most dependent staple food pattern (Q4). However, the current evidence on the effect of dietary patterns on thyroid function needs to be validated by further longitudinal studies that include long-term follow-up, larger sample sizes and repeated measures.
This study investigates the flow structures and combustion regimes in an axisymmetric cavity-based scramjet combustor with a total temperature of 1800 K and a high Reynolds number of approximately 1 × 107. The hydroxyl planar laser-induced fluorescence technique, along with the broadband flame emission and CH* chemiluminescence, is employed to visualize the instantaneous flame structure in the optically accessible cavity. The jet-wake flame stabilization mode is observed, with intense heat release occurring in the jet wake upstream of the cavity. A hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation approach is performed for the 0.18-equivalent-ratio case with a pressure-corrected flamelet/progress variable model. The combustion regime is identified mainly in the corrugated or wrinkled flamelet regime (approximately 102 < Da < 104, 103 < Ret < 105 where $Da$ is the Damköhler number and $Re_t$ is the turbulent Reynolds number). The combustion process is jointly dominated by supersonic combustion (which accounts for approximately 58 %) and subsonic combustion, although subsonic combustion has a higher heat release rate (peak value exceeding 1 × 109 J (m3s)−1). A partially premixed flame is observed, where the diffusion flame packages a considerable quantity of twisted premixed flame. The shockwave plays a critical role in generating vorticity by strengthening the volumetric expansion and baroclinic torque term, and it can facilitate the chemical reaction rates through the pressure and temperature surges, thereby enhancing the combustion. Combustion also shows a remarkable effect on the overall flow structures, and it drives alterations in the vorticity of the flow field. In turn, the turbulent flow facilitates the combustion and improves the flame stabilization by enhancing the reactant mixing and increasing the flame surface area.
Timing of food intake is an emerging aspect of nutrition; however, there is a lack of research accurately assessing food timing in the context of the circadian system. The study aimed to investigate the relation between food timing relative to clock time and endogenous circadian timing with adiposity and further explore sex differences in these associations among 151 young adults aged 18–25 years. Participants wore wrist actigraphy and documented sleep and food schedules in real time for 7 consecutive days. Circadian timing was determined by dim-light melatonin onset (DLMO). The duration between last eating occasion and DLMO (last EO-DLMO) was used to calculate the circadian timing of food intake. Adiposity was assessed using bioelectrical impedance analysis. Of the 151 participants, 133 were included in the statistical analysis finally. The results demonstrated that associations of adiposity with food timing relative to circadian timing rather than clock time among young adults living in real-world settings. Sex-stratified analyses revealed that associations between last EO-DLMO and adiposity were significant in females but not males. For females, each hour increase in last EO-DLMO was associated with higher BMI by 0·51 kg/m2 (P = 0·01), higher percent body fat by 1·05 % (P = 0·007), higher fat mass by 0·99 kg (P = 0·01) and higher visceral fat area by 4·75 cm2 (P = 0·02), whereas non-significant associations were present among males. The findings highlight the importance of considering the timing of food intake relative to endogenous circadian timing instead of only as clock time.
Hydrogen sulfide (H2S) has been shown to play a significant role in oxidative stress across various tissues and cells; however, its role in sperm function remains poorly understood. This study aimed to investigate the protective effect of GYY4137, a slow-releasing H2S compound, on sperm damage induced by H2O2. We assessed the effects of GYY4137 on motility, viability, lipid peroxidation and caspase-3 activity in human spermatozoa in vitro following oxidative damage mediated by H2O2. Spermatozoa from 25 healthy men were selected using a density gradient centrifugation method and cultured in the presence or absence of 10 μM H2O2, followed by incubation with varying concentrations of GYY4137 (0.625–2.5 μM). After 24 h of incubation, sperm motility, viability, lipid peroxidation, and caspase-3 activity were evaluated. The results indicated that H2O2 adversely affected sperm parameters, reducing motility and viability, while increasing oxidative stress, as evidenced by elevated lipid peroxidation and caspase-3 activity. GYY4137 provided dose-dependent protection against H2O2-induced oxidative stress (OS). We concluded that supplementation with GYY4137 may offer antioxidant protection during in vitro sperm preparation for assisted reproductive technology.
Suppressing mode degradation is the key issue for high-power laser delivery; however, diagnosing mode degradation in its entirety, ranging from the contents and origins to locations, has always been a major obstacle. Here, a versatile approach for tracing the origins of mode coupling is demonstrated through addressing the differential intermodal dispersions of fiber modes. Full recognition for modal contents and the origins of mode degradation are experimentally completed in a two-mode fiber laser delivery system, which assists a significant improvement of beam quality M2 from 1.35 to 1.15 at the highest power of over 300 W. This method yields a quantitative characterization for manipulating the individual mode of dual-mode coupling origins or their combinations. This work points toward a promising strategy for the online tracing of mode coupling in cascade fiber links, thus enabling further pursuit of seeking extreme beam quality in high-power fiber laser systems.
Liquid crystal microwave phased arrays (LC-MPAs) are regarded as an ideal approach to realize compact antennas owing to their advantages in cost, size, weight, and power consumption. However, the shortcoming in low radiation deflection efficiency has been one of LC-MPAs’ main application limitations. To optimize the steering performance of LC-MPAs, it is essential to model the channel imperfections and compensate for the phase errors. In this paper, a phase error estimation model is built by training a neural network to establish a nonlinear relationship between the near-field phase error and the far-field pattern, hence realizing fast calibration for LC-MPAs within several measured patterns. Simulations and experiments on a 64-channel, two-dimensional planar antenna were conducted to validate this method. The results show that this method offers precise phase error estimations of 3.58° on average, realizes a fast calibration process with several field-measured radiation patterns, and improves the performances of the LC-MPA by approximately 4%–10% in deflection efficiency at different steering angles.
To assess the efficacy and safety of two different modes of administration, external ear canal filling and smearing, in the treatment of otomycosis.
Methods
A computerised search of relevant published studies in the China National Knowledge Infrastructure, China Biology Medicine, Web of Science, PubMed, Embase and Cochrane Library databases that include randomised controlled trials or clinically controlled trials on the same drug in different modes of administration for the treatment of otomycosis.
Results
Seven studies with 934 patients were included. The filled group had a higher clinical efficacy (relative risk = 1.18, 95 per cent confidence interval (CI) 1.12–1.24, p < 0.0001) and a lower recurrence rate (relative risk = 0.29, 95 per cent CI 0.18–0.47, p < 0.0001) compared with the smear group, and there was no significant difference in the adverse effects (relative risk = 0.61, 95 per cent CI 0.34–1.12, p = 0.11).
Conclusion
Current evidence suggests that the efficacy of the delivery modality of the external auditory canal filling treatment is significantly better than external auditory canal smearing.