Rapid urbanization poses several challenges, especially when faced with an uncontrolled urban development plan. Therefore, it often leads to anarchic occupation and expansion of cities, resulting in the phenomenon of urban sprawl (US). To support sustainable decision–making in urban planning and policy development, a more effective approach to addressing this issue through US simulation and prediction is essential. Despite the work published in the literature on the use of deep learning (DL) methods to simulate US indicators, almost no work has been published to assess what has already been done, the potential, the issues, and the challenges ahead. By synthesising existing research, we aim to assess the current landscape of the use of DL in modelling US. This article elucidates the complexities of US, focusing on its multifaceted challenges and implications. Through an examination of DL methodologies, we aim to highlight their effectiveness in capturing the complex spatial patterns and relationships associated with US. This work begins by demystifying US, highlighting its multifaceted challenges. In addition, the article examines the synergy between DL and conventional methods, highlighting the advantages and disadvantages. It emerges that the use of DL in the simulation and forecasting of US indicators is increasing, and its potential is very promising for guiding strategic decisions to control and mitigate this phenomenon. Of course, this is not without major challenges, both in terms of data and models and in terms of strategic city planning policies.