Hostname: page-component-f554764f5-sl7kg Total loading time: 0 Render date: 2025-04-21T14:58:51.468Z Has data issue: false hasContentIssue false

Stability performance of an Algerian Ni/purified diatomite catalyst in the dry reforming methane reaction: characterization and properties

Published online by Cambridge University Press:  26 September 2024

Massinissa Adjissa
Affiliation:
Université de Béjaïa, Faculté de Technologie, Laboratoire de Technologie des Matériaux et du Génie des Procédés (LTMGP), Béjaïa, Algeria
Nedjima Bouzidi*
Affiliation:
Université de Béjaïa, Faculté de Technologie, Laboratoire de Technologie des Matériaux et du Génie des Procédés (LTMGP), Béjaïa, Algeria
Kahina Ikkour
Affiliation:
Université de Béjaïa, Faculté des Sciences Exactes, Laboratoire de Physico-chimie des Matériaux et Catalyse (LPCMC), Béjaïa, Algeria
Salim Ouhenia
Affiliation:
Université de Béjaïa, Faculté des Sciences Exactes, Laboratoire de Physico-chimie des Matériaux et Catalyse (LPCMC), Béjaïa, Algeria
Ouarda Benlounes
Affiliation:
Applied Chemistry and Chemical Engineering Laboratory, University of Tizi Ouzou, Tizi Ouzou, Algeria
Nouara Lamrani
Affiliation:
Applied Chemistry and Chemical Engineering Laboratory, University of Tizi Ouzou, Tizi Ouzou, Algeria
*
Corresponding author: Nedjima Bouzidi; Email: nedjmabouzidi@yahoo.fr

Abstract

This work aims to characterize and study the properties of an Algerian diatomaceous earth (Sig-Mascara) as a catalyst carrier. A commercial product of diatomite was characterized by granulometric analysis, X-ray fluorescence, X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis/differential scanning calorimetry and scanning electron microscopy/energy-dispersive X-ray spectroscopy methods. To purify the diatomite and remove the impurities (iron oxides, clay minerals, quartz and organic matters), the <63 μm fraction of the diatomite was separated out. The 15Ni/Ds-700 catalyst has lower SiO2, Al2O3 and CaO contents compared with the original diatomite. The NiO content of the catalyst is 15 wt.%, indicating successful impregnation. According to the nitrogen sorption–desorption results, the specific surface area of the purified diatomite particles (<63 μm) increased from 26.47 to 46.33 m2 g–1 compared to crude diatomite. The 15Ni/Ds-700 catalyst was applied in the dry reforming of methane to obtain synthesis gas (CO and H2). The results showed that the catalyst was relatively stable during catalytic measurements for 6 h, although the conversion rate value was low (12%).

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Editor: George Christidis

References

Abdullah, N., Ainirazali, N. & Ellapan, H. (2021) Structural effect of Ni/SBA-15 by Zr promoter for H2 production via methane dry reforming. International Journal of Hydrogen Energy, 46, 2480624813.CrossRefGoogle Scholar
Aouadja, F., Bouzerara, F., Guvenc, C.M. & Demir, M.M. (2022) Fabrication and properties of novel porous ceramic membrane supports from the (Sig) diatomite and alumina mixtures. Boletín de la SociedadEspañola de Cerámica y Vidrio, 61, 531540.CrossRefGoogle Scholar
Balaska, A., Samar, M.E., Meradi, H., Abbess, I.M. & Leksir, Y.L.D. (2008) Caractérisation et étude thermique et morphologique de la diatomite Algérienne. Algerian Journal of Advanced Materials, 4, 3740.Google Scholar
Benayache, S., Alleg, S., Mebrek, A. & Sunol, J.J. (2018) Thermal and microstructural properties of paraffin/diatomite composite. Vacuum, 157, 136144.CrossRefGoogle Scholar
Bian, Z., Suryawinata, I.Y. & Kawi, S. (2016) Highly carbon resistant multicore–shell catalyst derived from Ni-Mg phyllosilicate nanotubes silica for dry reforming of methane. Applied Catalysis B: Environmental, 195, 18.CrossRefGoogle Scholar
Challiwala, M.S., Ghouri, M.M., Linke, P., El-Halwagi, M.M. & Elbashir, N.O. (2017) A combined thermo-kinetic analysis of various methane reforming technologies: comparison with dry reforming. Journal of CO 2 Utilization, 17, 99111.CrossRefGoogle Scholar
Chen, L., Li, Z., Li, W., Chen, Z., Chen, G., Yang, W. & Liu, X. (2021) Investigation of adsorption kinetics and the isotherm mechanism of manganese by modified diatomite. ACS Omega, 6, 1640216409.CrossRefGoogle ScholarPubMed
Cherrak, R. & Hadjel, M. (2016) Treatment of recalcitrant organic pollutants in water by heterogeneous catalysis using a mixed material (TiO2-diatomite of Algeria). Desalination and Water Treatment, 57, 1713917148.CrossRefGoogle Scholar
De Boer, J.H. (1958) The Structure and Properties of Porous Materials. Butterworths, London.Google Scholar
Dekkar, S., Tezkratt, S., Sellam, D., Ikkour, K., Parkhomenko, K., Martinez-Martin, A. & Roger, A.C. (2020) Dry reforming of methane over Ni–Al2O3 and Ni–SiO2 catalysts: role of preparation methods. Catalysis Letters, 150, 21802199.CrossRefGoogle Scholar
Fraine, Y., Seladji, C. & Aït-Mokhtar, A. (2019) Effect of micro encapsulation phase change material and diatomite composite filling on hygrothermal performance of sintered hollowbricks. Building and Environment, 154, 145154.CrossRefGoogle Scholar
Giles, C.H., Smith, D. & Huitson, A. (1974) A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloid and Interface Science, 47, 755765.CrossRefGoogle Scholar
Hadjadj-Aoul, O., Belabbes, R., Belkadi, M. & Guermouche, M.H. (2005) Characterization and performances of an Algerian diatomite-based gas chromatography support. Applied Surface Science, 240, 131139.CrossRefGoogle Scholar
Hadjar, H., Hamdi, B. & Ania, C.O. (2011) Adsorption of p-cresol on novel diatomite/carbon composites. Journal of Hazardous Materials, 188, 304310.CrossRefGoogle ScholarPubMed
Hadjar, H., Hamdi, B., Jaber, M., Brendlé, J., Kessaissia, Z., Balard, H. & Donnet, J.B. (2008) Elaboration and characterisation of new mesoporous materials from diatomite and charcoal. Microporous and Mesoporous Materials, 107, 219226.CrossRefGoogle Scholar
Hao, J., Dai, Z., Guan, M., Dang, P., Wang, H., Yan, C. & Li, G. (2021) Simultaneous enhancement of luminescence and stability of lead halide perovskites by a diatomite microcavity for light-emitting diodes. Chemical Engineering Journal, 417, 128056.CrossRefGoogle Scholar
Jabbour, K., El Hassan, N., Davidson, A., Massiani, P. & Casale, S. (2015) Characterizations and performances of Ni/diatomite catalysts for dry reforming of methane. Chemical Engineering Journal, 264, 351358.CrossRefGoogle Scholar
Kristiani, A. & Takeishi, K. (2022) CO2 methanation over nickel-based catalyst supported on yttria-stabilized zirconia. Catalysis Communications, 165, 106435.CrossRefGoogle Scholar
Lauermannová, A.M., Lojka, M., Jankovský, O., Faltysová, I., Pavlíková, M., Pivák, A. et al. (2021) High-performance magnesium oxychloride composites with silica sand and diatomite. Journal of Materials Research and Technology, 11, 957969.CrossRefGoogle Scholar
Li, B., Wang, T., Le, Q., Qin, R., Zhang, Y. & Zeng, H.C. (2022) Surface reconstruction, modification and functionalization of natural diatomites for miniaturization of shaped heterogeneous catalysts. Nano Materials Science, 5, 293311.CrossRefGoogle Scholar
Li, L., Jiang, X., Wang, H., Wang, J., Song, Z., Zhao, X. & Ma, C. (2017) Methane dry and mixed reforming on the mixture of bio-char and nickel-based catalyst with microwave assistance. Journal of Analytical and Applied Pyrolysis, 125, 318327.CrossRefGoogle Scholar
Liu, D., Yu, W., Deng, L., Yuan, W., Ma, L., Yuan, P. & He, H. (2016) Possible mechanism of Pavlík structural incorporation of Al into diatomite during the deposition process I. Via a condensation reaction of hydroxyl groups. Journal of Colloid and Interface Science, 461, 6468.CrossRefGoogle Scholar
Liu, H., Yao, L., Taief, H.B.H., Benzina, M., Da Costa, P. & Gálvez, M.E. (2018) Natural clay-based Ni-catalysts for dry reforming of methane at moderate temperatures. Catalysis Today, 306, 5157.CrossRefGoogle Scholar
Liu, M.Y., Zheng, L., Lin, G.L., Ni, L.F. & Song, X.C. (2020) Synthesis and photocatalytic activity of BiOCl/diatomite composite photocatalysts: natural porous diatomite as photocatalyst support and dominant facets regulator. Advanced Powder Technology, 31, 339350.CrossRefGoogle Scholar
Mansour, B., Bessedik, M., Saint Martin, J.P. & Belkebir, L. (2008) Signifcation paléoécologique des assemblages de diatomées du Messinien du Dahra sud-occidental (bassin du Chélif, Algérie nord-occidentale). Geodiversity, 30, 117139.Google Scholar
Mendoza-Nieto, J.A., Duan, Y. & Pfeiffer, H. (2018) Alkaline zirconates as effective materials for hydrogen production through consecutive carbon dioxide capture and conversion in methane dry reforming. Applied Catalysis B: Environment and Energy, 238, 576585.CrossRefGoogle Scholar
Meradi, H., Bahloul, L., Boubendira, K., Bouazdia, A. & Ismail, F. (2015) Characterization by thermal analysis of natural kieselguhr and sand for industrial application. Energy Procedia, 74, 12821288.CrossRefGoogle Scholar
Merkouri, L.P., Le Saché, E., Pastor-Pérez, L., Duyar, M.S. & Reina, T.R. (2022) Versatile Ni–Ru catalysts for gas phase CO2 conversion: bringing closer dry reforming, reverse water gas shift and methanation to enable end-products flexibility. Fuel, 315, 123097.CrossRefGoogle Scholar
Moreno, A.A., Ramirez-Reina, T., Ivanova, S., Roger, A.C., Centeno, M.A. & Odriozola, J.A. (2021) Bimetallic Ni–Ru and Ni–Re catalysts for dry reforming of methane: understanding the synergies of the selected promoters. Frontiers in Chemistry, 9, 694976.CrossRefGoogle Scholar
Niu, J.T., Wang, Y.L., Liland, S.E., Regli, S.K., Yang, J. & Rout, K.R. (2021) Unraveling enhanced activity, selectivity, and coke resistance of Pt–Ni bimetallic clusters in dry reforming. ACS Catalysis, 11, 23982411.CrossRefGoogle Scholar
Pakhare, D. & Spivey, J. (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chemical Society Reviews, 43, 78137837.CrossRefGoogle ScholarPubMed
Pan, C., Guo, Z., Dai, H., Ren, R. & Chu, W. (2020) Anti-sintering mesoporous Ni–Pd bimetallic catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy, 45, 1613316143.CrossRefGoogle Scholar
Qin, Z.Z., Chen, J., Xie, X.L., Luo, X., Su, T.M. & Ji, H.B. (2020) CO2 reforming of CH4 to syngas over nickel-based catalysts. Environmental Chemistry Letters, 18, 9971017.CrossRefGoogle Scholar
Rabie, A.M., Shaban, M., Abukhadra, M.R., Hosny, R., Ahmed, S.A. & Negm, N.A. (2019) Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. Journal of Molecular Liquids, 279, 224231.CrossRefGoogle Scholar
Raje, A.P., O'Brien, R.J. & Davis, B.H. (1998) Effect of potassium promotion on iron-based catalysts for Fischer–Tropsch synthesis. Journal of Catalysis, 180, 3643.CrossRefGoogle Scholar
Sellam, D., Ikkour, K., Dekkar, S., Messaoudi, H., Belaid, T. & Roger, A.C. (2019) CO2 reforming of methane over LaNiO3 perovskite supported catalysts: influence of silica support. Bulletin of Chemical Reaction Engineering & Catalysis, 14, 568578.CrossRefGoogle Scholar
Shen, Z., Wang, H., Yu, Q., Li, Q., Lu, X. & Kong, X. (2021) On-site separation and identification of polycyclic aromatic hydrocarbons from edible oil by TLC-SERS on diatomite photonic biosilica plate. Microchemical Journal, 160, 105672.CrossRefGoogle Scholar
Sophiana, I.C., Iskandar, F., Devianto, H., Nishiyama, N. & Budhi, Y.W. (2022) Coke-resistant Ni/CeZrO2 catalysts for dry reforming of methane to produce hydrogen-rich syngas. Nanomaterials, 12, 1556.CrossRefGoogle ScholarPubMed
Sun, M., Chen, W.C., Zhao, L., Wang, X.L. & Su, Z.M. (2018) A PTA/MIL-101 (Cr)-diatomite composite as catalyst for efficient oxidative desulfurization. Inorganic Chemistry Communications, 87, 3035.CrossRefGoogle Scholar
Taoukil, D., El Meski, Y., Lahlaouti, M.I., Djedjig, R. & El Bouardi, A. (2021) Effect of the use of diatomite as partial replacement of sand on thermal and mechanical properties of mortars. Journal of Building Engineering, 42, 103038.CrossRefGoogle Scholar
Terekhova, E.N., Belskaya, O.B., Trenikhin, M.V., Babenko, A.V., Muromtzev, I.V. & Likholobov, V.A. (2023) Nickel catalysts based on carbon-mineral supports derived from sapropel for hydroliquefaction of sapropel organic matter. Fuel, 332, 126300.CrossRefGoogle Scholar
Van Viet, P., Van Chuyen, D., Hien, N.Q., Duy, N.N. & Thi, C.M. (2020) Visible-light-induced photo-Fenton degradation of rhodamine B over Fe2O3–diatomite materials. Journal of Science: Advanced Materials and Devices, 5, 308315.Google Scholar
Wang, N., Yu, X., Shen, K., Chu, W. & Qian, W. (2013) Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen. International Journal of Hydrogen Energy, 38, 97189731.CrossRefGoogle Scholar
Wang, S., Lu, G.Q. & Millar, G.J. (1996) Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art. Energy & Fuels, 10, 896904.CrossRefGoogle Scholar
Xia, K., Liu, X., Chen, Z., Fang, L., Du, H. & Zhang, X. (2020) Efficient and sustainable treatment of anionic dye wastewaters using porous cationic diatomite. Journal of the Taiwan Institute of Chemical Engineers, 113, 815.CrossRefGoogle Scholar
Yao, G., Lei, J., Zhang, X., Sun, Z. & Zheng, S. (2018) One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite. Materials, 11, 906.CrossRefGoogle ScholarPubMed
Yusan, S., Bampaiti, A., Aytas, S., Erenturk, S. & Aslani, M.A. (2016) Synthesis and structural properties of ZnO and diatomite-supported ZnO nanostructures. Ceramics International, 42, 21582163.CrossRefGoogle Scholar
Zhang, C., Zhu, W., Li, S., Wu, G., Ma, X., Wang, X. & Gong, J. (2013) Sintering-resistant Ni-based reforming catalysts obtained via the nano confinement effect. Chemical Communications, 49, 93839385.CrossRefGoogle Scholar
Zhang, Q., Feng, X., Liu, J., Zhao, L., Song, X., Zhang, P. & Gao, L. (2018) Hollow hierarchical Ni/MgO–SiO2 catalyst with high activity, thermal stability and coking resistance for catalytic dry reforming of methane. International Journal of Hydrogen Energy, 43, 1105611068.CrossRefGoogle Scholar
Zijie, R., Yuhao, H., Renji, Z., Zhengzheng, G., Huimin, G., Xiangliang, H. et al. (2022) The preparation and characterization of calcined diatomite with high adsorption properties by CaO hydrothermal activation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 636, 128134.Google Scholar