Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T03:59:23.786Z Has data issue: false hasContentIssue false

Impact of wiggler magnetic field on wakefield generation and electron acceleration by Gaussian, super-Gaussian and Bessel–Gaussian laser pulses propagating in collisionless plasma

Published online by Cambridge University Press:  02 March 2023

M. Abedi-Varaki*
Affiliation:
Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
M.E. Daraei
Affiliation:
Department of Atomic and Molecular Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
*
 Email address for correspondence: M.abedi.varaki@gmail.com

Abstract

In this research, the process of electron acceleration and wakefield generation by Gaussian-like (GL), super-Gaussian (SG) and Bessel–Gaussian (BG) laser pulses through cold collisionless plasma in the presence of a planar magnetostatic wiggler are studied. Three different types of laser spatial profiles, GL, SG and BG, are considered. Additionally, using the hydrodynamics fluid equations, Maxwell's equations as well as the perturbation technique for GL, SG and BG laser pulses in the weakly nonlinear regime and in the presence of a planar magnetostatic wiggler, governing equations for analysing the laser wakefield and electron acceleration have been derived and compared correspondingly. In addition, the effect of some important factors, including the wiggler field strengths, laser intensity, pulse length, plasma electron density and laser frequency on the wakefield and the electron energy gain, have been investigated. Numerical results show that enhancing the wiggler magnetic field results in an increase in the amplitude of the wakefield. Furthermore, it is observed that in comparison with the wakefield amplitude excited by SG and GL laser pulses, the amplitude of the wakefield excited by BG laser pulse is larger when the wiggler field is enhanced. Moreover, it is realized that the type of the laser profile, selected laser parameters and wiggler magnetic field are the most decisive and effective factors in the wakefield amplitude and shape of wakefield generation through cold collisionless plasma. Also, it is seen that as the pulse length declines, the amplitude of the wakefield increases, and correspondingly the resonance positions shift to higher ${({\varOmega _w}/{\varOmega _p})_{max}}$ values.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abedi-Varaki, M. 2017 The effect of the wiggler magnetic field strength on the self-focusing of an intense laser pulse propagating through a magnetized non-Maxwellian plasma. Phys. Plasmas 24 (12), 122308.CrossRefGoogle Scholar
Abedi-Varaki, M. 2018 a Effects of the wiggler field on the terahertz radiation generated by intense laser beam in collisionless magnetoplasma. UPB Sci. Bull. A- Appl. Math. Phys. 80 (2), 289.Google Scholar
Abedi-Varaki, M. 2018 b Electron acceleration by a circularly polarized electromagnetic wave publishing in plasma with a periodic magnetic field and an axial guide magnetic field. Mod. Phys. Lett. B 32 (20), 1850225.CrossRefGoogle Scholar
Abedi-Varaki, M. 2018 c Enhanced THz radiation generation by photo-mixing of tophat lasers in rippled density plasma with a planar magnetostatic wiggler and s-parameter. Phys. Plasmas 25 (2), 023109.CrossRefGoogle Scholar
Abedi-Varaki, M. 2019 Electron acceleration of a surface wave propagating in wiggler-assisted plasma. Mod. Phys. Lett. B 33 (20), 1950267.CrossRefGoogle Scholar
Abedi-Varaki, M. 2020 Effect of obliquely external magnetic field on the intense laser pulse propagating in plasma medium. Intl J. Mod. Phys. B 34 (07), 2050044.CrossRefGoogle Scholar
Abedi-Varaki, M. & Jafari, S. 2017 a Nonlinear interaction of intense left-and right-hand polarized laser pulse with hot magnetized plasma. J. Plasma Phys. 83 (4), 655830401.CrossRefGoogle Scholar
Abedi-Varaki, M. & Jafari, S. 2017 b Relativistic self-focusing of an intense laser pulse with hot magnetized plasma in the presence of a helical magnetostatic wiggler. Phys. Plasmas 24 (8), 082309.CrossRefGoogle Scholar
Abedi-Varaki, M. & Jafari, S. 2017 c Self-focusing and de-focusing of intense left-and right-hand polarized laser pulse in hot magnetized plasma in the presence of an external non-uniform magnetized field. Braz. J. Phys. 47 (5), 473.CrossRefGoogle Scholar
Abedi-Varaki, M. & Jafari, S. 2017 d Self-focusing and de-focusing of intense left and right-hand polarized laser pulse in hot magnetized plasma: laser out-put power and laser spot-size. Opt.-Intl J. Light Electron. Opt. 142, 360.CrossRefGoogle Scholar
Abedi-Varaki, M. & Jafari, S. 2018 a The effects of helical magnetostatic wiggler on the modulation instability of a laser pulse propagating through a hot magnetoplasma. Opt.-Intl J. Light Electron. Opt. 158, 1240.CrossRefGoogle Scholar
Abedi-Varaki, M. & Jafari, S. 2018 b Enhanced THz radiation from beating of two Cosh–Gaussian laser beams in a wiggler-assisted collisional magnetized plasma. J. Opt. Soc. Am. B 35 (5), 1165.CrossRefGoogle Scholar
Abedi-Varaki, M. & Jafari, S. 2018 c Second-harmonic generation of a linearly polarized laser pulse propagating through magnetized plasma in the presence of a planar magnetostatic wiggler. Eur. Phys. J. Plus 133 (4), 137.CrossRefGoogle Scholar
Abedi-Varaki, M. & Kant, N. 2022 Magnetic field-assisted wakefield generation and electron acceleration by Gaussian and super-Gaussian laser pulses in plasma. Mod. Phys. Lett. B 36 (07), 2150604.CrossRefGoogle Scholar
Abedi-Varaki, M. & Panahi, N. 2019 Non-linear absorption of an intense laser pulse propagating in wiggler-assisted underdense collisional plasma. Contrib. Plasma Phys. 59 (9), e201900001.CrossRefGoogle Scholar
Albert, F., Lemos, N., Shaw, J., Pollock, B., Goyon, C., Schumaker, W., Saunders, A., Marsh, K., Pak, A. & Ralph, J. 2017 Observation of betatron x-ray radiation in a self-modulated laser wakefield accelerator driven with picosecond laser pulses. Phys. Rev. Lett. 118 (13), 134801.CrossRefGoogle Scholar
Caizergues, C., Smartsev, S., Malka, V. & Thaury, C. 2020 Phase-locked laser-wakefield electron acceleration. Nature Photonics 14 (8), 475.CrossRefGoogle Scholar
Chen, P., Chang, F.-Y., Lin, G.-L., Noble, R.J. & Sydora, R. 2009 A new type of plasma wakefield accelerator driven by magnetowaves. Plasma Phys. Control. Fusion 51 (2), 024012.CrossRefGoogle Scholar
Esarey, E., Schroeder, C. & Leemans, W. 2009 Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81 (3), 1229.CrossRefGoogle Scholar
Fallah, R. & Khorashadizadeh, S. 2019 Electron acceleration by Bessel–Gaussian laser pulse in a plasma in the presence of an external magnetic field. High Energy Density Phys. 31, 5.CrossRefGoogle Scholar
Gopal, K., Gupta, D., Jain, A., Hur, M.S. & Suk, H. 2021 a Investigation of electron beam parameters in laser wakefield acceleration using skewed laser pulse and external magnetic field. Curr. Appl. Phys. 25, 82.CrossRefGoogle Scholar
Gopal, K., Gupta, D.N. & Suk, H. 2021 b Pulse-length effect on laser wakefield acceleration of electrons by skewed laser pulses. IEEE Trans. Plasma Sci. 49 (3), 1152.CrossRefGoogle Scholar
Górska, K. & Penson, K.A. 2013 Exact and explicit evaluation of Brézin–Hikami kernels. Nucl. Phys. B 872 (3), 333.CrossRefGoogle Scholar
Gupta, D., Gopal, K., Nam, I., Kulagin, V. & Suk, H. 2014 Laser wakefield acceleration of electrons from a density-modulated plasma. Laser Part. Beams 32 (3), 449.CrossRefGoogle Scholar
Gupta, D., Kant, N. & Singh, K. 2018 Electron acceleration by a radially polarized laser pulse in the presence of an intense pulsed magnetic field. Laser Phys. 29 (1), 015301.CrossRefGoogle Scholar
Haines, B.M., Shah, R.C., Smidt, J.M., Albright, B.J., Cardenas, T., Douglas, M.R., Forrest, C., Glebov, V.Y., Gunderson, M.A. & Hamilton, C.E. 2020 Observation of persistent species temperature separation in inertial confinement fusion mixtures. Nature Commun. 11 (1), 19.CrossRefGoogle ScholarPubMed
Hooker, S.M. 2013 Developments in laser-driven plasma accelerators. Nature Photonics 7 (10), 775.CrossRefGoogle Scholar
Hooker, S., Brunetti, E., Esarey, E., Gallacher, J., Geddes, C., Gonsalves, A., Jaroszynski, D., Kamperidis, C., Kneip, S. & Krushelnick, K. 2007 GeV plasma accelerators driven in waveguides. Plasma Phys. Control. Fusion 49 (12B), B403.CrossRefGoogle Scholar
Hörmander, L. 1967 Hypoelliptic second order differential equations. Acta Math. 119 (1), 147.CrossRefGoogle Scholar
Jha, P., Saroch, A. & Mishra, R.K. 2013 Wakefield generation and electron acceleration by intense super-Gaussian laser pulses propagating in plasma. Laser Part. Beams 31 (4), 583.CrossRefGoogle Scholar
Joshi, C. 2007 The development of laser-and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14 (5), 525.CrossRefGoogle Scholar
Joshi, C., Corde, S. & Mori, W. 2020 Perspectives on the generation of electron beams from plasma-based accelerators and their near and long term applications. Phys. Plasmas 27 (7), 070602.CrossRefGoogle Scholar
Kautz, E.J., Phillips, M.C. & Harilal, S.S. 2020 Unraveling spatio-temporal chemistry evolution in laser ablation plumes and its relation to initial plasma conditions. Analyt. Chem. 92 (20), 13839.CrossRefGoogle ScholarPubMed
Leemans, W., Gonsalves, A., Mao, H.-S., Nakamura, K., Benedetti, C., Schroeder, C., Tóth, C., Daniels, J., Mittelberger, D. & Bulanov, S. 2014 Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113 (24), 245002.CrossRefGoogle ScholarPubMed
Li, Y., Lee, H. & Wolf, E. 2004 New generalized Bessel–Gaussian beams. J. Opt. Soc. Am. A 21 (4), 640.CrossRefGoogle ScholarPubMed
Lindberg, R., Charman, A., Wurtele, J. & Friedland, L. 2004 Robust autoresonant excitation in the plasma beat-wave accelerator. Phys. Rev. Lett. 93 (5), 055001.CrossRefGoogle ScholarPubMed
Litos, M., Adli, E., An, W., Clarke, C., Clayton, C., Corde, S., Delahaye, J., England, R., Fisher, A. & Frederico, J. 2014 High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515 (7525), 92.CrossRefGoogle Scholar
Lundh, O., Lim, J., Rechatin, C., Ammoura, L., Ben-Ismaïl, A., Davoine, X., Gallot, G., Goddet, J.-P., Lefebvre, E. & Malka, V. 2011 Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator. Nat. Phys. 7 (3), 219.CrossRefGoogle Scholar
Malik, H.K., Kumar, S. & Nishida, Y. 2007 Electron acceleration by laser produced wake field: pulse shape effect. Opt. Commun. 280 (2), 417.CrossRefGoogle Scholar
Roussel, R., Andonian, G., Lynn, W., Sanwalka, K., Robles, R., Hansel, C., Deng, A., Lawler, G., Rosenzweig, J. & Ha, G. 2020 Single shot characterization of high transformer ratio wakefields in nonlinear plasma acceleration. Phys. Rev. Lett. 124 (4), 044802.CrossRefGoogle ScholarPubMed
Sherlock, M. & Bissell, J. 2020 Suppression of the Biermann battery and stabilization of the thermomagnetic instability in laser fusion conditions. Phys. Rev. Lett. 124 (5), 055001.CrossRefGoogle ScholarPubMed
Tajima, T. & Dawson, J. 1979 Laser electron accelerator. Phys. Rev. Lett. 43 (4), 267.CrossRefGoogle Scholar
Tajima, T. & Malka, V. 2020 Laser plasma accelerators. Plasma Phys. Control. Fusion 62 (3), 034004.CrossRefGoogle Scholar
Yadav, M., Gupta, D.N. & Sharma, S.C. 2020 Electron plasma wave excitation by a q-Gaussian laser beam and subsequent electron acceleration. Phys. Plasmas 27 (9), 093106.CrossRefGoogle Scholar
Zhao, Y., An, W., Xu, X., Li, F., Hildebrand, L., Hogan, M.J., Yakimenko, V., Joshi, C. & Mori, W.B. 2020 Emittance preservation through density ramp matching sections in a plasma wakefield accelerator. Phys. Rev. Accel. Beams 23 (1), 011302.CrossRefGoogle Scholar