Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T18:31:02.825Z Has data issue: false hasContentIssue false

K-STABLE DIVISORS IN $\mathbb {P}^1\times \mathbb {P}^1\times \mathbb {P}^2$ OF DEGREE $(1,1,2)$

Published online by Cambridge University Press:  28 April 2023

IVAN CHELTSOV*
Affiliation:
School of Mathematics University of Edinburgh Edinburgh, Scotland
KENTO FUJITA
Affiliation:
Department of Mathematics Osaka University Osaka, Japan fujita@math.sci.osaka-u.ac.jp
TAKASHI KISHIMOTO
Affiliation:
Department of Mathematics Faculty of Science Saitama University Saitama, Japan kisimoto.takasi@gmail.com
TAKUZO OKADA
Affiliation:
Department of Mathematics Faculty of Science and Engineering Saga University Saga, Japan okada@cc.saga-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

We prove that every smooth divisor in $\mathbb {P}^1\times \mathbb {P}^1\times \mathbb {P}^2$ of degree $(1,1,2)$ is K-stable.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

1 Introduction

Smooth Fano threefolds have been classified by Iskovskikh, Mori, and Mukai into $105$ families, which are labeled as

1.1,

1.2,

1.3, $\ldots $ ,

10.1. See [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3] for the description of these families. Threefolds in each of these $105$ deformation families can be parametrized by a nonempty rational irreducible variety. It has been proved in [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3], [Reference Fujita11], [Reference Fujita12] that the deformation families

do not have smooth K-polystable members, and general members of the remaining 78 deformation families are K-polystable. In fact, for 54 among these 78 families, we know all K-polystable smooth members [Reference Abban and Zhuang2]–[Reference Cheltsov and Park6], [Reference Denisova9], [Reference Liu14], [Reference Xu and Liu16]. The remaining $24$ deformation families are

The goal of this paper is to show that all smooth Fano threefolds in the family 3.3 are K-stable. Smooth members of this deformation family are smooth divisors in $\mathbb {P}^1\times \mathbb {P}^1\times \mathbb {P}^2$ of degree $(1,1,2)$ . To be precise, we prove the following result.

Main Theorem. Let X be a smooth divisor in $\mathbb {P}^1\times \mathbb {P}^1\times \mathbb {P}^2$ of degree $(1,1,2)$ . Then X is K-stable.

2 Smooth Fano threefolds in the deformation family 3.3

Let X be a divisor in $\mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}\times \mathbb {P}^2_{x,y,z}$ of tridegree $(1,1,2)$ , where $([s:t],[u:v],[x:y:z])$ are coordinates on $\mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}\times \mathbb {P}^2_{x,y,z}$ . Then X is given by the following equation:

$$ \begin{align*}\left[ \begin{array}{cc} s & t\\ \end{array} \right] \left[ \begin{array}{cc} a_{11} & a_{12}\\ a_{21} & a_{22}\\ \end{array} \right] \left[ \begin{array}{c} u \\ v \\ \end{array} \right]=0, \end{align*} $$

where each $a_{ij}=a_{ij}(x,y,z)$ is a homogeneous polynomials of degree $2$ . We can also define X by

$$ \begin{align*}\left[ \begin{array}{ccc} x & y & z\\ \end{array} \right] \left[ \begin{array}{ccc} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33}\\ \end{array} \right] \left[ \begin{array}{c} x \\ y \\ z \\ \end{array} \right]=0, \end{align*} $$

where each $b_{ij}=b_{ij}(s,t;u,v)$ is a bi-homogeneous polynomial of degree $(1,1)$ .

Suppose that X is smooth. Then X is a smooth Fano threefold in the deformation family

3.3. Moreover, every smooth Fano threefold in this deformation family can be obtained in this way. Observe that $-K_X^3=18$ , and we have the following commutative diagram:

where all maps are induced by natural projections. Note that $\omega $ is a (standard) conic bundle whose discriminant curve $\Delta _{\mathbb {P}^1\times \mathbb {P}^1}\subset \mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}$ is a (possibly singular) curve of degree $(3,3)$ given by

$$ \begin{align*}\mathrm{det}\left[\begin{array}{ccc} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33}\\ \end{array} \right]=0. \end{align*} $$

Similarly, the map $\pi _3$ is a (nonstandard) conic bundle whose discriminant curve $\Delta _{\mathbb {P}^2}$ is a smooth plane quartic curve in $\mathbb {P}^2_{x,y,z}$ , which is given by $a_{11}a_{22}=a_{12}a_{21}$ . Both maps $\phi _1$ and $\phi _2$ are birational morphisms that blow up the following smooth genus $3$ curves:

$$ \begin{align*} \big\{sa_{11}+ta_{21}=sa_{12}+ta_{22}=0\big\}&\subset\mathbb{P}^1_{s,t}\times\mathbb{P}^2_{x,y,z},\\ \big\{ua_{11}+va_{12}=ua_{21}+va_{22}=0\big\}&\subset\mathbb{P}^1_{u,v}\times\mathbb{P}^2_{x,y,z}. \end{align*} $$

Finally, both morphisms $\pi _1$ and $\pi _2$ are fibrations into quintic del Pezzo surfaces.

Let $H_1=\pi _1^*(\mathcal {O}_{\mathbb {P}^1}(1))$ , let $H_2=\pi _2^*(\mathcal {O}_{\mathbb {P}^1}(1))$ , let $H_3=\pi _3^*(\mathcal {O}_{\mathbb {P}^2}(1))$ , and let $E_1$ and $E_2$ be the exceptional divisors of the morphisms $\phi _1$ and $\phi _2$ , respectively. Then

$$ \begin{align*} -K_X&\sim H_1+H_2+H_3,\\ E_1&\sim H_1+2H_3-H_2,\\ E_2&\sim H_2+2H_3-H_1. \end{align*} $$

This gives $E_1+E_2\sim 4H_3$ , which also follows from $E_1+E_2=\pi _3^*(\Delta _{\mathbb {P}^2})$ . We have

$$ \begin{align*}-K_X\sim_{\mathbb{Q}} \frac{3}{2}H_1+\frac{1}{2}H_2+\frac{1}{2}E_2\sim_{\mathbb{Q}} \frac{1}{2}H_1+\frac{3}{2}H_2+\frac{1}{2}E_1. \end{align*} $$

In particular, we see that $\alpha (X)\leqslant \frac {2}{3}$ . Note that $E_1\cong E_2\cong \Delta _{\mathbb {P}^2}\times \mathbb {P}^1$ .

The Mori cone $\overline {\mathrm {NE}}(X)$ is simplicial and is generated by the curves contracted by $\omega $ , $\phi _1$ , and $\phi _2$ . The cone of effective divisors $\mathrm {Eff}(X)$ is generated by the classes of the divisors $E_1$ , $E_2$ , $H_1$ , and $H_2$ .

Lemma 1. Let S be a surface in the pencil $|H_1|$ . Then S is a normal quintic del Pezzo surface that has at most Du Val singularities, the restriction $\pi _3\vert _{S}\colon S\to \mathbb {P}^2_{x,y,z}$ is a birational morphism, and the restriction $\pi _2\vert _{S}\colon S\to \mathbb {P}^1_{u,v}$ is a conic bundle. Moreover, one of the following cases holds:

  • $\bullet $ The surface S is smooth.

  • (𝔸1) The surface S has one singular point of type $\mathbb {A}_1$ .

  • (2𝔸1) The surface S has two singular points of type $\mathbb {A}_1$ .

  • (𝔸2) The surface S has one singular point of type $\mathbb {A}_2$ .

  • (𝔸3) The surface S has one singular point of type $\mathbb {A}_3$ .

Furthermore, in each of these five cases, the del Pezzo surface S is unique up to an isomorphism.

Remark 2. In the notations and assumptions of Lemma 1, suppose that the surface S is singular, and let $\varpi \colon \widetilde {S}\to S$ be its minimal resolution of singularities. Then the dual graph of the $(-1)$ -curves and $(-2)$ -curves on the surface $\widetilde {S}$ can be described as follows:

  • ( $\mathbb {A}_1$ ) if S has one singular point of type $\mathbb {A}_1$ , then the dual graph is

  • ( $2\mathbb {A}_1$ ) if S has two singular points of type $\mathbb {A}_1$ , then the dual graph is

  • ( $\mathbb {A}_2$ ) if S has one singular point of type $\mathbb {A}_2$ , then the dual graph is

  • ( $\mathbb {A}_3$ ) if S has one singular point of type $\mathbb {A}_3$ , then the dual graph is

Here, as in the papers [Reference Cheltsov and Prokhorov7], [Reference Coray and Tsfasman8], we denote a $(-1)$ -curve by $\bullet $ , and we denote a $(-2)$ -curve by $\circ $ .

Lemma 3. Let $S_1$ be a surface in $|H_1|$ , let $S_2$ be a surface in $|H_2|$ , and let P be a point in $S_1\cap S_2$ . Then at least one of the surfaces $S_1$ or $S_2$ is smooth at P.

Proof. Local computations.

Corollary 4. In the notations and assumptions of Lemma 3, suppose that the conic $S_1\cdot S_2$ is reduced. Then at least one of the surfaces $S_1$ or $S_2$ is smooth along $S_1\cap S_2$ .

Lemma 5. Let P be a point in X, let C be the scheme fiber of the conic bundle $\omega $ that contains P, and let Z be the scheme fiber of the conic bundle $\pi _3$ that contains P. Then C or Z is smooth at P.

Proof. Local computations.

Lemma 6. Let C be a fiber of the morphism $\pi _3$ , and let S be a general surface in $|H_3|$ that contains C. Then S is smooth, $K_S^2=4$ , and $-K_S\sim (H_1+H_2)\vert _{S}$ , which implies that $-K_S$ is nef and big. Moreover, one of the following three cases holds:

  1. (1) The conic C is smooth, $-K_S$ is ample, and the restriction $\omega \vert _{S}\colon S\to \mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}$ is a double cover branched over a smooth curve of degree $(2,2)$ .

  2. (2) The conic C is smooth, the divisor $-K_S$ is not ample, the conic $\omega (C)$ is an irreducible component of the discriminant curve $\Delta _{\mathbb {P}^1\times \mathbb {P}^1}$ , the conic C is contained in $\mathrm {Sing}(\omega ^{-1}(\Delta _{\mathbb {P}^1\times \mathbb {P}^1}))$ , and the restriction map $\omega \vert _{S}\colon S\to \mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}$ fits the following commutative diagram:

    where $\alpha $ is a birational morphism that contracts two disjoint $(-2)$ -curves, and $\beta $ is a double cover branched over a singular curve of degree $(2,2)$ , which is a union of the curve $\omega (C)$ and another smooth curve of degree $(1,1)$ , which intersect transversally at two distinct points.
  3. (3) The conic C is singular, $-K_S$ is ample, and the restriction $\omega \vert _{S}\colon S\to \mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}$ is a double cover branched over a smooth curve of degree $(2,2)$ .

Proof. The smoothness of the surface S easily follows from local computations. If $-K_S$ is ample, the remaining assertions are obvious. So, to complete the proof, we assume that $-K_S$ is not ample. Then the restriction $\omega \vert _{S}\colon S\to \mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}$ fits the commutative diagram

where $\alpha $ is a birational morphism that contracts all $(-2)$ -curves in S, and $\beta $ is a double cover branched over a singular curve of degree $(2,2)$ . Let $\ell $ be a $(-2)$ -curve in S. Then

$$ \begin{align*}(H_1+H_2)\cdot\ell=-K_S\cdot\ell=0, \end{align*} $$

so that $\omega (\ell )$ is a point in $\mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}$ . But $\pi _3(\ell )$ is a line in $\mathbb {P}^2_{x,y,z}$ that contains the point $\pi _3(C)$ . This shows that the curve $\ell $ is an irreducible component of a singular fiber of the conic bundle $\omega $ . Therefore, we see that $\omega (\ell )\in \Delta _{\mathbb {P}^1\times \mathbb {P}^1}$ . This implies that the conic bundle $\omega $ maps an irreducible component of the conic C to an irreducible component of the curve $\Delta _{\mathbb {P}^1\times \mathbb {P}^1}$ because S is a general surface in the linear system $|H_3|$ that contains the curve C.

If C is singular, an irreducible component of the curve $\Delta _{\mathbb {P}^1\times \mathbb {P}^1}$ is a curve of degree $(1,0)$ or $(0,1)$ , which is impossible [Reference Prokhorov15, §3.8]. Therefore, we see that the conic C is smooth and irreducible, and the curve $\omega (C)\cong C$ is an irreducible component of the discriminant curve $\Delta _{\mathbb {P}^1\times \mathbb {P}^1}$ . Since the conic bundle $\omega $ is standard [Reference Prokhorov15], the surface $\omega ^{-1}(\omega (C))$ is irreducible and nonnormal, which easily implies that the conic C is contained in its singular locus.

Choosing appropriate coordinates on $\mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}\times \mathbb {P}^2_{x,y,z}$ , we may assume that $\pi _3(C)=[0:0:1]$ , the conic C is given by $x=y=sv-tu=0$ , $([0:1],[0:1])$ is a smooth point of the curve $\Delta _{\mathbb {P}^1\times \mathbb {P}^1}$ , and the fiber $\omega ^{-1}([0:1],[0:1])$ is given by $s=u=xy=0$ . Then X is given by

$$ \begin{align*} &(a_1su+b_1sv+c_1 tu)x^2+(a_2su+b_2sv+c_2tu+tv)xy+\\ & \quad +b_4(sv-tu)xz+(a_3su+b_3sv+c_3tu)y^2+b_5(sv-tu)yz+(sv-tu)z^2=0 \end{align*} $$

for some numbers $a_1$ , $a_2$ , $a_3$ , $b_1$ , $b_2$ , $b_3$ , $b_4$ , $b_5$ , $c_1$ , $c_2$ , $c_3$ . One can check that $\Delta _{\mathbb {P}^1\times \mathbb {P}^1}$ indeed splits as a union of the curve $\omega (C)$ and the curve in $\mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}$ of degree $(2,2)$ that is given by

$$ \begin{align*} &a_1b_5^2stu^2-a_1b_5^2s^2uv+a_2b_4b_5s^2uv-a_2b_4b_5stu^2-a_3b_4^2s^2uv+a_3b_4^2stu^2-b_1b_5^2s^2v^2+\\& \quad +b_1b_5^2stuv+b_2b_4b_5s^2v^2-b_2b_4b_5stuv-b_3b_4^2s^2v^2+b_3b_4^2stuv-b_4^2c_3stuv+b_4^2c_3t^2u^2+\\& \quad +b_4b_5c_2stuv-b_4b_5c_2t^2u^2-b_5^2c_1stuv+b_5^2c_1t^2u^2+4a_1a_3s^2u^2+4a_1b_3s^2uv+4a_1c_3stu^2-\\& \quad -a_2^2s^2u^2-2a_2b_2s^2uv-2a_2c_2stu^2+4a_3b_1s^2uv+4a_3c_1stu^2+ 4b_1b_3s^2v^2+4b_1c_3stuv-\\& \quad -b_2^2s^2v^2-2b_2c_2stuv+4b_3c_1stuv+b_4b_5stv^2-b_4b_5t^2uv+4c_1c_3t^2u^2-c_2^2t^2u^2-2a_2stuv-\\& \quad -2b_2stv^2-2c_2t^2uv-t^2v^2=0. \end{align*} $$

The surface S is cut out on X by the equation $y=\lambda x$ , where $\lambda $ is a general complex number. Then the double cover $\beta \colon \overline {S}\to \mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}$ is branched over a singular curve of degree $(2,2)$ , which splits as a union of the curve $\omega (C)$ and the curve in $\mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}$ of degree $(1,1)$ that is given by

$$ \begin{align*} &\lambda^2 b_5^2tu-\lambda^2b_5^2sv+4\lambda^2a_3su+4\lambda^2b_3sv-2b_4\lambda b_5sv+2\lambda b_4b_5tu+\\& \quad +4\lambda^2c_3tu+4\lambda a_2su+4\lambda b_2sv-b_4^2sv+b_4^2tu+4\lambda c_2tu+4a_1su+4b_1sv+4c_1tu+4\lambda tv=0. \end{align*} $$

Since $\lambda $ is general and X is smooth, these two curves intersect transversally by two points, which implies the remaining assertions of the lemma.

Note that the case ( $\mathrm {2}$ ) in Lemma 6 indeed can happen. For instance, if X is given by

$$ \begin{align*}(sv+tu)x^2+(su-sv+tv)xy+(5sv-5tu)zx+3suy^2+(sv-tu)zy+(sv-tu)z^2=0, \end{align*} $$

then X is smooth, and general surface in $|H_3|$ that contains the curve $\pi _3^{-1}([0:0:1])$ is a smooth weak del Pezzo surface, which is not a quartic del Pezzo surface.

Lemma 7. Let C be a smooth fiber of the morphism $\omega $ , and let S be a general surface in $|H_1+H_2|$ that contains the curve C. Then S is a smooth del Pezzo surface of degree $2$ , and $-K_S\sim H_3\vert _{S}$ .

Proof. Left to the reader.

3 Applications of Abban–Zhuang theory

Let us use notations and assumptions of §2. Let $f\colon \widetilde {X}\to X$ be a birational map such that $\widetilde {X}$ is a normal threefold, and let $\mathbf {F}$ be a prime divisor in $\widetilde {X}$ . Then, to prove that X is K-stable, it is enough to show that $\beta (\mathbf {F})=A_X(\mathbf {F})-S_X(\mathbf {F})>0$ , where $A_X(\mathbf {F})=1+\mathrm {ord}_{\mathbf {F}}(K_{\widetilde {X}}/K_X)$ and

$$ \begin{align*}S_X(\mathbf{F})=\frac{1}{-K_X^3}\int_{0}^{\infty}\mathrm{vol}\big(f^*(-K_X)-u\mathbf{F}\big)du. \end{align*} $$

This follows from the valuative criterion for K-stability [Reference Fujita11], [Reference Li13].

Let $\mathfrak {C}$ be the center of the divisor $\mathbf {F}$ on the threefold X. By [Reference Fujita10, Th. 10.1], we have

$$ \begin{align*}S_X(S)=\frac{1}{-K_X^3}\int_{0}^{\infty}\mathrm{vol}\big(-K_X-uS\big)du<1 \end{align*} $$

for every surface $S\subset X$ . Hence, if $\mathfrak {C}$ is a surface, then $\beta (\mathbf {F})>0$ . Thus, to show that X is K-stable, we may assume that $\mathfrak {C}$ is either a curve or a point. If $\mathfrak {C}$ is a curve, then [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.26] gives the following corollary.

Corollary 8. Suppose that $\beta (\mathbf {F})\leqslant 0$ and that $\mathfrak {C}$ is a curve. Let S be an irreducible normal surface in the threefold X that contains $\mathfrak {C}$ . Set

$$ \begin{align*} S\big(W^S_{\bullet,\bullet};\mathfrak{C}\big)&=\frac{3}{(-K_X)^3}\int_0^\tau\big(P(u)^{2}\cdot S\big)\cdot\mathrm{ord}_{\mathfrak{C}}\big(N(u)\big\vert_{S}\big)du+\\ & \quad+\frac{3}{(-K_X)^3}\int_0^\tau\int_0^\infty \mathrm{vol}\big(P(u)\big\vert_{S}-v\mathfrak{C}\big)dvdu, \end{align*} $$

where $\tau $ is the largest rational number u such that $-K_X-uS$ is pseudoeffective, $P(u)$ is the positive part of the Zariski decomposition of $-K_X-uS$ , and $N(u)$ is its negative part. Then $S(W^S_{\bullet ,\bullet };\mathfrak {C})>1$ .

Let P be a point in $\mathfrak {C}$ . Then

$$ \begin{align*}\frac{A_X(\mathbf{F})}{S_X(\mathbf{F})}\geqslant\delta_P(X)=\inf_{\substack{E/X\\ P\in C_X(E)}}\frac{A_{X}(E)}{S_X(E)}, \end{align*} $$

where the infimum is taken over all prime divisors E over X whose centers on X that contain P. Therefore, to prove that the Fano threefold X is K-stable, it is enough to show that $\delta _P(X)>1$ . On the other hand, we can estimate $\delta _P(X)$ by using [Reference Abban and Zhuang1, Th. 3.3] and [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.30]. Namely, let S be an irreducible surface in X with Du Val singularities such that $P\in S$ . Set

$$ \begin{align*}\tau=\mathrm{sup}\Big\{u\in\mathbb{Q}_{\geqslant 0}\ \big\vert\ \text{the divisor }-K_X-uS\text{ is pseudoeffective}\Big\}. \end{align*} $$

For $u\in [0,\tau ]$ , let $P(u)$ be the positive part of the Zariski decomposition of the divisor $-K_X-uS$ , and let $N(u)$ be its negative part. Then [Reference Abban and Zhuang1, Th. 3.3] and [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.30] give

(3.1) $$ \begin{align} \delta_P(X)\geqslant\mathrm{min}\Bigg\{\frac{1}{S_X(S)},\delta_{P}\big(S;W^S_{\bullet,\bullet}\big)\Bigg\} \end{align} $$

for

$$ \begin{align*}\delta_{P}\big(S;W^S_{\bullet,\bullet}\big)=\inf_{\substack{F/S,\\ P\subseteq C_S(F)}}\frac{A_S(F)}{S(W^S_{\bullet,\bullet};F)}, \end{align*} $$

where

$$ \begin{align*}S\big(W^S_{\bullet,\bullet}; F\big)=\frac{3}{-K_X^3}\kern-1.3pt\int_0^\tau\!\kern-1.2pt\big(P(u)^{2}\cdot S\big)\cdot\mathrm{ord}_{F}\big(N(u)\big\vert_{S}\big)du+\frac{3}{-K_X^3}\!\int_{0}^{\tau}\!\!\int_0^\infty \!\mathrm{vol}\big(P(u)\big\vert_{S}-vF\big)dvdu, \end{align*} $$

and now the infimum is taken over all prime divisors F over S whose centers on S that contain P. Let us show how to apply (3.1) in some cases. Recall that $S_X(S)<1$ by [Reference Fujita10, Th. 10.1].

Lemma 9. Let C be the fiber of the conic bundle $\pi _3$ that contains P, and let S be a general surface in $|H_3|$ that contains C. Suppose that S is a smooth del Pezzo of degree $4$ and that C is smooth. Then $\delta _P(X)>1$ .

Proof. One has $\tau =1$ . Moreover, for $u\in [0,1]$ , we have $N(u)=0$ and $P(u)|_S=-K_S+ (1-u)C$ . Let $L=-K_S+(1-u)C$ . Using Lemma 24 and arguing as in the proof of Lemma 27, we get

$$ \begin{align*} S\big(W^S_{\bullet,\bullet};F\big)&=\frac{1}{6}\int_0^1 4(1+(1-u))S_L(F)du\leqslant \\ & \quad \leqslant A_S(F)\int_0^1 \frac{4}{6}(1+(1-u)) \frac{19+8(1-u)+(1-u)^2}{24}du=\frac{143}{144}A_S(F) \end{align*} $$

for any prime divisor F over S such that $P\in C_S(F)$ . Then (3.1) gives $\delta _P(X)>1$ .

Similarly, we obtain the following result.

Lemma 10. Let S be the surface in $|H_1|$ that contains P. Then

$$ \begin{align*}\delta_P(X)\geqslant\mathrm{min}\Bigg\{\frac{1}{S_X(S)},\frac{2,592\delta_P(S)}{2,560+63\delta_P(S)}\Bigg\} \end{align*} $$

for $\delta _P(S)=\delta _P(S,-K_S)$ , where $\delta _P(S,-K_S)$ is defined in Appendix 1.

Proof. We have $\tau =\frac {3}{2}$ . Moreover, we have

$$ \begin{align*}P(u)=\left\{\begin{aligned} &(1-u)H_1+H_2+H_3,\ \text{if }0\leqslant u\leqslant 1, \\ &(2-u)H_2+(3-2u)H_3,\ \text{if }1\leqslant u\leqslant \frac{3}{2}, \\ \end{aligned} \right. \end{align*} $$

and

$$ \begin{align*}N(u)=\left\{\begin{aligned} &0,\ \text{if }0\leqslant u\leqslant 1, \\ &(u-1)E_2,\ \text{if }1\leqslant u\leqslant \frac{3}{2}.\\ \end{aligned} \right. \end{align*} $$

Note also that $E_2\vert _{S}$ is a smooth genus $3$ curve contained in the smooth locus of the surface S.

Recall that S is a quintic del Pezzo surface with at most Du Val singularities and that the restriction morphism $\pi _2\vert _{S}\colon S\to \mathbb {P}^1_{u,v}$ is a conic bundle. Note that the morphism $\pi _3\vert _{S}\colon S\to \mathbb {P}^2_{x,y,z}$ is birational. Let C be a fiber of the conic bundle $\pi _2\vert _{S}$ , and let L be the preimage in S of a general line in $\mathbb {P}^2_{x,y,z}$ . Then $-K_S\sim C+L$ and

$$ \begin{align*}P(u)\big\vert_{S}\sim_{\mathbb{R}}\left\{\begin{aligned} &C+L,\ \text{if }0\leqslant u\leqslant 1, \\ &(2-u)C+(3-2u)L,\ \text{if }1\leqslant u\leqslant \frac{3}{2}. \\ \end{aligned} \right. \end{align*} $$

Since $2L-C$ is pseudoeffective, the divisor $\frac {7-4u}{3}(-K_S)-(2-u)C-(3-2u)L$ is also pseudoeffective.

Let F be a divisor over S such that $P\in C_S(F)$ . Then it follows from Lemma 27 that

$$ \begin{align*} S\big(W^S_{\bullet,\bullet};F\big)&\leqslant\frac{1}{6}A_S(F)\int_1^{\frac{3}{2}}(u-1)\big(P(u)\big\vert_{S}\big)^2du+\frac{1}{6}\int_{0}^{\frac{3}{2}}\int_0^\infty \mathrm{vol}\big(P(u)\big\vert_{S}-vF\big)dvdu=\\&=\frac{7}{288}A_S(F)+\frac{1}{6}\int_{0}^{1}\int_0^\infty \mathrm{vol}\big(-K_S-vF\big)dvdu+\\&\quad+\frac{1}{6}\int_{1}^{\frac{3}{2}}\int_0^\infty\mathrm{vol}\big((2-u)C+(3-2u)L-vF\big)dvdu\leqslant\\&\leqslant\frac{7}{288}A_S(F)+\frac{1}{6}\int_{0}^{1}5\frac{A_S(F)}{\delta_P(S)}du+\frac{1}{6}\int_{1}^{\frac{3}{2}}\int_0^\infty\mathrm{vol}\Bigg(\frac{7-4u}{3}\big(-K_S\big)-vF\Bigg)dvdu=\\&=\frac{7}{288}A_S(F)+\frac{5}{6\delta_P(S)}A_S(F)+\frac{1}{6}\int_{1}^{\frac{3}{2}}\Bigg(\frac{7-4u}{3}\Bigg)^3\int_0^\infty\mathrm{vol}\big(-K_S-vF\big)dvdu\leqslant\\&\leqslant\frac{7}{288}A_S(F)+\frac{5}{6\delta_P(S)}A_S(F)+\frac{1}{6}\int_{1}^{\frac{3}{2}}\Bigg(\frac{7-4u}{3}\Bigg)^35\frac{A_S(F)}{\delta_P(S)}du=\\&=\frac{7}{288}A_S(F)+\frac{5}{6\delta_P(S)}A_S(F)+\frac{25}{162\delta_P(S)}A_S(F)=\Bigg(\frac{80}{81\delta_P(S)}+\frac{7}{288}\Bigg)A_S(F). \end{align*} $$

Then $\delta _{P}(S;W^S_{\bullet ,\bullet })\geqslant \frac {1}{\frac {80}{81\delta _P(S)}+\frac {7}{288}}=\frac {2,592\delta _P(S)}{2,560+63\delta _P(S)}$ and the required assertion follows from (3.1).

Keeping in mind that $S_X(S)<1$ by [Reference Fujita10, Th. 10.1] and the $\delta $ -invariant of the smooth quintic del Pezzo surface is $\frac {15}{13}$ by [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Lem. 2.11], we obtain the following corollary.

Corollary 11. Let S be the surface in $|H_1|$ that contains P. If S is smooth, then $\delta _P(X)>1$ .

Similarly, using Lemmas 25 and 26 from Appendix 1, we obtain the following corollary.

Corollary 12. Let S be the surface in $|H_1|$ that contains P. Suppose that S has at most singular points of type $\mathbb {A}_1$ and that P is not contained in any line in S that passes through a singular point. Then $\delta _P(X)>1$ .

Alternatively, we can estimate $\delta _P(X)$ using [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Th. 1.7.30]. Namely, let C be an irreducible smooth curve in S that contains P. Suppose S is smooth at P. Since $S\not \subset \mathrm {Supp}(N(u))$ , we write

$$ \begin{align*}N(u)\big\vert_S=d(u)C+N_S^\prime(u), \end{align*} $$

where $N_S^\prime (u)$ is an effective $\mathbb {R}$ -divisor on S such that $C\not \subset \mathrm {Supp}(N_S^\prime (u))$ , and $d(u)=\mathrm {ord}_C(N(u)\vert _S)$ . Now, for every $u\in [0,\tau ]$ , we define the pseudoeffective threshold $t(u)\in \mathbb {R}_{\geqslant 0}$ as follows:

$$ \begin{align*}t(u)=\inf\Big\{v\in \mathbb R_{\geqslant 0} \ \big|\ \text{the divisor }P(u)\big|_S-vC\text{ is pseudoeffective}\Big\}. \end{align*} $$

For $v\in [0, t(u)]$ , we let $P(u,v)$ be the positive part of the Zariski decomposition of $P(u)|_S-vC$ , and we let $N(u,v)$ be its negative part. As in Corollary 8, we let

$$ \begin{align*} S\big(W^S_{\bullet,\bullet};C\big)&=\frac{3}{(-K_X)^3}\int_0^\tau\big(P(u)^{2}\cdot S\big)\cdot\mathrm{ord}_{C}\big(N(u)\big\vert_{S}\big)du+\\ & \quad + \frac{3}{(-K_X)^3}\int_0^\tau\int_0^\infty \mathrm{vol}\big(P(u)\big\vert_{S}-vC\big)dvdu. \end{align*} $$

Note that $C\not \subset \mathrm {Supp}(N(u,v))$ for every $u\in [0, \tau )$ and that $v\in (0, t(u))$ . Thus, we can let

$$ \begin{align*}F_P\big(W_{\bullet,\bullet,\bullet}^{S,C}\big)=\frac{6}{(-K_X)^3} \int_0^\tau\int_0^{t(u)}\big(P(u,v)\cdot C\big)\cdot \mathrm{ord}_P\big(N_S^\prime(u)\big|_C+N(u,v)\big|_C\big)dvdu. \end{align*} $$

Finally, we let

$$ \begin{align*}S\big(W_{\bullet, \bullet,\bullet}^{S,C};P\big)=\frac{3}{(-K_X)^3}\int_0^\tau\int_0^{t(u)}\big(P(u,v)\cdot C\big)^2dvdu+F_P\big(W_{\bullet,\bullet,\bullet}^{S,C}\big). \end{align*} $$

Then [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Th. 1.7.30] gives the following corollary.

Corollary 13. One has

(★) $$ \begin{align} \frac{A_X(\mathbf{F})}{S_X(\mathbf{F})}\geqslant\delta_P(X)\geqslant \min\left\{\frac{1}{S(W_{\bullet, \bullet,\bullet}^{S,C}; P)}, \frac{1}{S(W_{\bullet,\bullet}^S;C)},\frac{1}{S_X(S)}\right\}. \end{align} $$

Moreover, if both inequalities in () are equalities and $\mathfrak {C}=P$ , then $\delta _P(X)=\frac {1}{S_X(S)}$ .

Let us show how to compute $S(W_{\bullet ,\bullet }^S;C)$ and $S(W_{\bullet , \bullet ,\bullet }^{S,C};P)$ in some cases.

Lemma 14. Suppose that $\omega (P)\not \in \Delta _{\mathbb {P}^1\times \mathbb {P}^1}$ . Let S be a general surface in $|H_1+H_2|$ that contains P, and let C be the fiber of the morphism $\omega $ containing P. Then $S(W_{\bullet ,\bullet }^S;C)=\frac {31}{36}$ and $S(W_{\bullet , \bullet ,\bullet }^{S,C};P)=1$ .

Proof. We have $\tau =1$ . Moreover, for $u\in [0,1]$ , we have $N(u)=0$ and $P(u)|_S=-K_S+2(1-u)C$ . On the other hand, it follows from Lemma 7 that S is a smooth del Pezzo surface of degree $2$ , and the restriction map $\pi _3\vert _{S}\colon S\to \mathbb {P}^2_{x,y,z}$ is a double cover that is ramified over a smooth quartic curve. Therefore, applying the Galois involution of this double cover to C, we obtain another smooth irreducible curve $Z\subset S$ such that $C+Z\sim -2K_S$ , $C^2=Z^2=0$ and $C\cdot Z=4$ , which gives

$$ \begin{align*}P(u)|_S-vC\sim_{\mathbb{R}}\Big(\frac{5}{2}-2u-v\Big)C+\frac{1}{2}Z. \end{align*} $$

Then $P(u)\vert _{S}-vC$ is pseudoeffective $\iff P(u)\vert _{S}-vC$ is nef $\iff v\leqslant \frac {5}{2}-2u$ . Thus, we have

$$ \begin{align*}\mathrm{vol}\big(P(u)\vert_{S}-vC\big)=\big(-K_S+2(1-u)C\big)^2=10-8u-4v \end{align*} $$

and $P(u,v)\cdot C=2$ . Now, integrating, we obtain $S(W_{\bullet ,\bullet }^S;C)=\frac {31}{36}$ and $S(W_{\bullet ,\bullet ,\bullet }^{S,C};P)=1$ .

Lemma 15. Suppose that $P\not \in E_1\cup E_2$ . Let S be a general surface in $|H_3|$ that contains P, and let C be the fiber of the morphism $\pi _3$ containing P. Suppose that S is a smooth del Pezzo surface. Then $S(W_{\bullet ,\bullet }^S;C)=\frac {7}{9}$ and $S(W_{\bullet , \bullet ,\bullet }^{S,C};P)=1$ .

Proof. We have $\tau =1$ . Moreover, for $u\in [0,1]$ , we have $N(u)=0$ and $P(u)|_S=-K_S+(1-u)C$ . Since S is a smooth del Pezzo surface, the restriction map $\omega \vert _{S}\colon S\to \mathbb {P}^1_{s,t}\times \mathbb {P}^1_{u,v}$ is a double cover ramified over a smooth elliptic curve. Therefore, using the Galois involution of this double cover, we get an irreducible curve $Z\subset S$ such that $C+Z\sim -K_S$ , $C^2=Z^2=0$ , and $C\cdot Z=2$ , which gives

$$ \begin{align*}P(u)|_S-vC\sim_{\mathbb{R}}(2-u-v)C+Z. \end{align*} $$

Then $P(u)\vert _{S}-vC$ is pseudoeffective $\iff P(u)\vert _{S}-vC$ is nef $\iff v\leqslant 2-u$ . Thus, we have

$$ \begin{align*}\mathrm{vol}\big(P(u)\vert_{S}-vC\big)=\big(-K_S+(1-u)C\big)^2=8-4u-4v \end{align*} $$

and $P(u,v)\cdot C=2$ . Now, integrating, we obtain $S(W_{\bullet ,\bullet }^S;C)=\frac {7}{9}$ and $S(W_{\bullet ,\bullet ,\bullet }^{S,C};P)=1$ .

Lemma 16. Suppose that $P\not \in E_1\cup E_2$ . Let S be a general surface in $|H_3|$ that contains P, and let C be the fiber of the morphism $\pi _3$ containing P. Suppose S is not a smooth del Pezzo surface. Then $S(W_{\bullet ,\bullet }^S;C)=\frac {8}{9}$ and $S(W_{\bullet , \bullet ,\bullet }^{S,C};P)=\frac {7}{9}$ .

Proof. We have $\tau =1$ . Moreover, for $u\in [0,1]$ , we have $N(u)=0$ and $P(u)|_S=-K_S+(1-u)C$ . It follows from Lemma 6 that S contains two $(-2)$ -curves $\mathbf {e}_1$ and $\mathbf {e}_2$ such that $-K_S\sim 2C+\mathbf {e}_1+\mathbf {e}_2$ . On the surface S, we have $C^2=0$ , $C\cdot \mathbf {e}_1=C\cdot \mathbf {e}_2=1$ , $\mathbf {e}_1^2=\mathbf {e}_2^2=-2$ , and

$$ \begin{align*}P(u)|_S-vC\sim_{\mathbb{R}}(3-u-v)C+\mathbf{e}_1+\mathbf{e}_2. \end{align*} $$

Then $P(u)\vert _{S}-vC$ is pseudoeffective $\iff v\leqslant 3-u$ . Moreover, we have

$$ \begin{align*}P(u,v)&=\left\{\begin{aligned} &(3-u-v)C+\mathbf{e}_1+\mathbf{e}_2,\ \text{if }0\leqslant v\leqslant 1-u, \\ &\frac{3-u-v}{2}\big(2C+\mathbf{e}_1+\mathbf{e}_2\big),\ \text{if }1-u\leqslant v\leqslant 3-u, \\ \end{aligned} \right. \\N(u,v)&=\left\{\begin{aligned} &0,\ \text{if }0\leqslant v\leqslant 1-u, \\ &\frac{u+v-1}{2}(\mathbf{e}_1+\mathbf{e}_2),\ \text{if }1-u\leqslant v\leqslant 3-u, \\ \end{aligned} \right. \\\mathrm{vol}\big(P(u)\vert_{S}-vC\big)&= \left\{\begin{aligned} &8-4u-4v,\ \text{if }0\leqslant v\leqslant 1-u, \\ &(u+v-3)^2,\ \text{if }1-u\leqslant v\leqslant 3-u. \\ \end{aligned} \right.\end{align*} $$

Now, integrating $\mathrm {vol}(P(u)\vert _{S}-vC)$ , we obtain $S(W_{\bullet ,\bullet }^S;C)=\frac {8}{9}$ .

To compute $S(W_{\bullet ,\bullet ,\bullet }^{S,C};P)$ , observe that $F_P(W_{\bullet ,\bullet ,\bullet }^{S,C})=0$ , because $P\not \in \mathbf {e}_1\cup \mathbf {e}_2$ , since S is a general surface in $|H_3|$ that contains C. On the other hand, we have

$$ \begin{align*}P(u,v)\cdot C=\left\{\begin{aligned} &2,\ \text{if }0\leqslant v\leqslant 1-u, \\ &3-u-v,\ \text{if }1-u\leqslant v\leqslant 3-u. \\ \end{aligned} \right. \end{align*} $$

Hence, integrating $(P(u,v)\cdot C)^2$ , we get $S(W_{\bullet ,\bullet ,\bullet }^{S,C};P)=\frac {7}{9}$ as required.

Lemma 17. Suppose $P\in (E_1\cup E_2)\setminus (E_1\cap E_2)$ . Let S be a general surface in $|H_3|$ that contains P, and let C be the irreducible component of the fiber of the conic bundle $\pi _3$ containing P such that $P\in C$ . Then $S(W_{\bullet ,\bullet }^S;C)=1$ and $S(W_{\bullet , \bullet ,\bullet }^{S,C};P)\leqslant \frac {31}{36}$ .

Proof. We have $\tau =1$ . For $u\in [0,1]$ , we have $N(u)=0$ and $P(u)|_S\sim _{\mathbb {R}}-K_S+(1-u) (C+C^\prime )$ , where $C^\prime $ is the irreducible curve in S such that $C+C^\prime $ is the fiber of the conic bundle $\pi _3$ that passes through the point P. Since $P\not \in E_1\cap E_2$ , we see that $P\not \in C^\prime $ .

By Lemma 6, the surface S is a smooth del Pezzo surface of degree $4$ , so we can identify it with a complete intersection of two quadrics in $\mathbb {P}^4$ . Then C and $C^\prime $ are lines in S, and S contains four additional lines that intersect C. Denote them by $L_1$ , $L_2$ , $L_3$ , and $L_4$ , and let $Z=L_1+L_2+L_3+L_4$ . Then the intersections of the curves C, $C^\prime $ , and Z on the surface S are given in the table below.

Observe that $-K_S\sim _{\mathbb {Q}}\frac {3}{2}C+\frac {1}{2}C^\prime +\frac {1}{2}Z$ . This gives $P(u)\vert _{S}-vC\sim _{\mathbb {R}}(\frac {5}{2}-u-v)C+ (\frac {3}{2}-u)C^\prime +\frac {1}{2}Z$ , which implies that $P(u)\vert _{S}-vC$ is pseudoeffective $\iff v\leqslant \frac {5}{2}-u$ .

Moreover, we have

$$ \begin{align*}P(u,v)&=\left\{\begin{aligned} &\Big(\frac{5}{2}-u-v\Big)C+\Big(\frac{3}{2}-u\Big)C^\prime+\frac{1}{2}Z,\ \text{if }0\leqslant v\leqslant 1, \\ &\Big(\frac{5}{2}-u-v\Big)(C+C^\prime)+\frac{1}{2}Z,\ \text{if }1\leqslant v\leqslant 2-u, \\ &\Big(\frac{5}{2}-u-v\Big)(C+C^\prime+Z),\ \text{if }2-u\leqslant v\leqslant \frac{5}{2}-u, \\ \end{aligned} \right.\\[4pt]N(u,v)&=\left\{\begin{aligned} &0,\ \text{if }0\leqslant v\leqslant 1, \\ &(v-1)C^\prime,\ \text{if }1\leqslant v\leqslant 2-u, \\ &(v-1)C^\prime+(v+u-2)Z,\ \text{if }2-u\leqslant v\leqslant \frac{5}{2}-u, \\ \end{aligned} \right.\\[4pt]P(u,v)\cdot C&=\left\{\begin{aligned} &1+v,\ \text{if }0\leqslant v\leqslant 1, \\ &2,\ \text{if }1\leqslant v\leqslant 2-u, \\ &10-4u-4v,\ \text{if }2-u\leqslant v\leqslant \frac{5}{2}-u, \end{aligned} \right.\\[4pt]\mathrm{vol}\big(P(u)\vert_{S}-vC\big)&= \left\{\begin{aligned} &8-v^2-4u-2v,\ \text{if }0\leqslant v\leqslant 1, \\ &9-4u-4v,\ \text{if }1\leqslant v\leqslant 2-u, \\ &(5-2u-2v)^2,\ \text{if }2-u\leqslant v\leqslant \frac{5}{2}-u. \\ \end{aligned} \right. \end{align*} $$

Now, integrating $\mathrm {vol}(P(u)\vert _{S}-vC)$ and $(P(u,v)\cdot C)^2$ , we get $S(W_{\bullet ,\bullet }^S;C)=1$ and

$$ \begin{align*} S\big(W_{\bullet, \bullet,\bullet}^{S,C};P\big)=\frac{5}{6}+F_P\big(W_{\bullet,\bullet,\bullet}^{S,C}\big)&=\frac{5}{6}+\frac{1}{3}\int_0^1\int_0^{\frac{5}{2}-u}\big(P(u,v)\cdot C\big)\cdot \mathrm{ord}_P\big(N(u,v)\big|_C\big)dvdu\leqslant\\ &\leqslant\frac{5}{6}+\frac{1}{3}\int_0^1\int_2^{\frac{5}{2}-u}(10-4u-4v)(v+u-2)dvdu=\frac{31}{36}, \end{align*} $$

because $P\not \in C^\prime $ , and the curves Z and C intersect each other transversally.

4 The proof of Main Theorem

Let us use notations and assumptions of §§2 and 3. Recall that $\mathbf {F}$ is a prime divisor over the threefold X and that $\mathfrak {C}$ is its center in X. To prove Main Theorem, we must show that $\beta (\mathbf {F})>0$ .

Lemma 18. Suppose that $\mathfrak {C}$ is a curve. Then $\beta (\mathbf {F})>0$ .

Proof. Suppose that $\beta (\mathbf {F})\leqslant 0$ . Then $\delta _P(X)\leqslant 1$ for every point $P\in \mathfrak {C}$ . Let us seek for a contradiction.

Let $S_1$ be a general surface in the linear system $|H_1|$ . Then $S_1$ is smooth. Hence, if $S_1\cap \mathfrak {C}\ne \varnothing $ , then $\delta _P(X)\leqslant 1$ for every point $P\in S_1\cap \mathfrak {C}$ , which contradicts Corollary 11. We see that $S_1\cdot \mathfrak {C}=0$ . Similarly, we see that $S_2\cdot \mathfrak {C}=0$ for a general surface $S_2\in |H_2|$ . So, we see that $\omega (\mathfrak {C})$ is a point.

Let C be the scheme fiber of the conic bundle $\omega $ over the point $\omega (\mathfrak {C})$ . Then $\mathfrak {C}$ is an irreducible component of the curve C. If the fiber C is smooth, then we $\mathfrak {C}=C$ .

Suppose that C is smooth. If S is a general surface in the linear system $|H_1+H_2|$ that contains $\mathfrak {C}$ , then $S(W_{\bullet ,\bullet }^S;\mathfrak {C})=\frac {31}{36}<1$ by Lemma 14, which contradicts Corollary 8. So, the curve C is singular.

Note that $\pi _3(\mathfrak {C})$ is a line in $\mathbb {P}^2_{x,y,z}$ . On the other hand, the discriminant curve $\Delta _{\mathbb {P}^2}$ is an irreducible smooth quartic curve in $\mathbb {P}^2_{x,y,z}$ . Therefore, in particular, the line $\pi _3(\mathfrak {C})$ is not contained in $\Delta _{\mathbb {P}^2}$ . Now, let P be a general point in $\mathfrak {C}$ , let Z be the fiber of the conic bundle $\pi _3$ that passes through P, and let S be a general surface in $|H_3|$ that contains the curve Z. Then Z and S are both smooth, and it follows from Lemma 6 that S is a del Pezzo of degree $4$ , so that $\delta _P(X)>1$ by Lemma 9.

Hence, to complete the proof of Main Theorem, we may assume that $\mathfrak {C}$ is a point. Set $P=\mathfrak {C}$ . Let $\mathscr {C}$ be the fiber of the conic bundle $\omega $ that contains P.

Lemma 19. Suppose that $P\not \in E_1\cap E_2$ . Then $\beta (\mathbf {F})>0$ .

Proof. Apply Lemmas 1517 and Corollary 13.

Thus, to complete the proof of Main Theorem, we may assume, in addition, that $P\in E_1\cap E_2$ . Then the conic $\mathscr {C}$ is smooth at P by Lemma 5. In particular, we see that $\mathscr {C}$ is reduced.

Lemma 20. Suppose that $\mathscr {C}$ is smooth. Then $\beta (\mathbf {F})>0$ .

Proof. Apply Lemma 14 and Corollary 13.

To complete the proof of Main Theorem, we may assume that $\mathscr {C}$ is singular. Write $\mathscr {C}=\ell _1+\ell _2$ , where $\ell _1$ and $\ell _2$ are irreducible components of the conic $\mathscr {C}$ . Then $P\ne \ell _1\cap \ell _2$ , since $P\not \in \mathrm {Sing}(\mathscr {C})$ .

Let $S_1$ and $S_2$ be general surfaces in $|H_1|$ and $|H_2|$ that pass through the point P, respectively. Then $\mathscr {C}=S_1\cap S_2$ , and it follows from Corollary 4 that $S_1$ or $S_2$ is smooth along the conic $\mathscr {C}$ . Without loss of generality, we may assume that $S_1$ is smooth along $\mathscr {C}$ . We let $S=S_1$ .

If S is smooth, then $\delta _P(X)>1$ by Corollary 11. Thus, we may assume that S is singular.

Recall that S is a quintic del Pezzo surface and that $\ell _1$ and $\ell _2$ are lines in its anticanonical embedding. The preimages of the lines $\ell _1$ and $\ell _2$ on the minimal resolution of the surface S are $(-1)$ -curves, which do not intersect $(-2)$ -curves. By Lemma 1 and Remark 2, one of the following cases holds:

  • ( $\mathbb {A}_1$ ) The surface S has one singular point of type $\mathbb {A}_1$ .

  • ( $2\mathbb {A}_1$ ) The surface S has two singular points of type $\mathbb {A}_1$ .

In both cases, the restriction morphism $\pi _3\vert _{S}\colon S\to \mathbb {P}^2_{x,y,z}$ is birational. In ( $\mathbb {A}_1$ )-case, this morphism contracts three disjoint irreducible smooth rational curves $\mathbf {e}_1$ , $\mathbf {e}_2$ , and $\mathbf {e}_3$ such that $E_1\vert _{S}=2\mathbf {e}_1+\mathbf {e}_2+\mathbf {e}_3$ , the curves $\mathbf {e}_1$ , $\mathbf {e}_2$ , and $\mathbf {e}_3$ are sections of the conic bundle $\pi _2\vert _{S}\colon S\to \mathbb {P}^1_{u,v}$ , the curve $\mathbf {e}_1$ passes through the singular point of the surface S, but $\mathbf {e}_2$ and $\mathbf {e}_3$ are contained in the smooth locus of the surface S. In ( $2\mathbb {A}_1$ )-case, the morphism $\pi _3\vert _{S}$ contracts two disjoint curves $\mathbf {e}_1$ and $\mathbf {e}_2$ such that $E_1\big \vert _{S}=2\mathbf {e}_1+2\mathbf {e}_2$ , the curves $\mathbf {e}_1$ and $\mathbf {e}_2$ are sections of the conic bundle $\pi _2\vert _{S}$ , and each curve among $\mathbf {e}_1$ and $\mathbf {e}_2$ contains one singular point of the surface S. In both cases, we may assume that $\ell _1\cap \mathbf {e}_1\ne \varnothing $ .

Let us identify the surface S with its image in $\mathbb {P}^5$ via the anticanonical embedding $S\hookrightarrow \mathbb {P}^5$ . Then $\ell _1$ and $\ell _2$ and the curves contracted by $\pi _3\vert _{S}$ are lines. In ( $\mathbb {A}_1$ )-case, the surface S contains two additional lines $\ell _3$ and $\ell _4$ such that $\ell _3+\ell _4\sim \ell _1+\ell _2$ , the intersection $\ell _3\cap \ell _4$ is the singular point of the surface S, and the intersection graph of the lines $\ell _1$ , $\ell _2$ , $\ell _3$ , $\ell _4$ , $\mathbf {e}_1$ , $\mathbf {e}_2$ , and $\mathbf {e}_3$ is shown here:

In this picture, we denoted by $\bullet $ the singular point of the surface S. Moreover, on the surface S, the intersections of the lines $\ell _1$ , $\ell _2$ , $\ell _3$ , $\ell _4$ , $\mathbf {e}_1$ , $\mathbf {e}_2$ , and $\mathbf {e}_3$ are given in the table below.

Likewise, in ( $2\mathbb {A}_1$ )-case, the surface S contains one additional line $\ell _3$ such that $2\ell _3\sim \ell _1+\ell _2$ , the line $\ell _3$ passes through both singular points of the del Pezzo surface S, and the intersection graph of the lines on the surface S is shown in the following picture:

As above, the singular points of the surface S are denoted by $\bullet $ . The intersections of the lines $\ell _1$ , $\ell _2$ , $\ell _3$ , $\mathbf {e}_1$ , and $\mathbf {e}_2$ on the surface S are given in the table below.

Remark 21. By [Reference Cheltsov and Prokhorov7, Lem. 2.9], the lines in S generate the group $\mathrm {Cl}(S)$ and the cone of effective divisors $\mathrm {Eff}(S)$ , and every extremal ray of the Mori cone $\overline {\mathrm {NE}}(S)$ is generated by the class of a line.

In ( $\mathbb {A}_1$ )-case, the point P is one of the points $\mathbf {e}_1\cap \ell _1$ , $\mathbf {e}_2\cap \ell _2$ , or $\mathbf {e}_3\cap \ell _2$ , because $P\in E_1\cap E_2$ . On the other hand, if $P=\mathbf {e}_2\cap \ell _2$ or $P=\mathbf {e}_3\cap \ell _2$ , it follows from Corollary 12 that $\delta _P(X)>1$ . In ( $2\mathbb {A}_1$ )-case, either $P=\mathbf {e}_1\cap \ell _1$ or $P=\mathbf {e}_2\cap \ell _2$ . Therefore, to complete the proof of Main Theorem, we may assume that $P=\mathbf {e}_1\cap \ell _1$ in both cases.

Now, we will apply Corollary 13 to the surface S with $C=\mathbf {e}_1$ at the point P. We have $\tau =\frac {3}{2}$ . As in the proof of Corollary 10, we see that

$$ \begin{align*}P(u)=\left\{\begin{aligned} &(1-u)H_1+H_2+H_3,\ \text{if }0\leqslant u\leqslant 1, \\ &(2-u)H_2+(3-2u)H_3,\ \text{if }1\leqslant u\leqslant \frac{3}{2}, \\ \end{aligned} \right. \end{align*} $$

and

$$ \begin{align*}N(u)=\left\{\begin{aligned} &0,\ \text{if }0\leqslant u\leqslant 1, \\ &(u-1)E_2,\ \text{if }1\leqslant u\leqslant \frac{3}{2}.\\ \end{aligned} \right. \end{align*} $$

Since $H_1\vert _{S}\sim 0$ , $H_2\vert _{S}\sim \ell _1+\ell _2$ , and $H_3\vert _{S}\sim \ell _1+2\mathbf {e}_1$ , we have

$$ \begin{align*}P(u)\big\vert_{S}-v\mathbf{e}_1\sim_{\mathbb{R}}\left\{\begin{aligned} &(2-v)\mathbf{e}_1+2\ell_1+\ell_2,\ \text{if }0\leqslant u\leqslant 1, \\ &(6-4u-v)\mathbf{e}_1+(5-3u)\ell_1+(2-u)\ell_2,\ \text{if }1\leqslant u\leqslant \frac{3}{2}. \\ \end{aligned} \right. \end{align*} $$

Thus, since the intersection form of the curves $\ell _1$ and $\ell _2$ is semi-negative definite, we get

$$ \begin{align*}t(u)=\left\{\begin{aligned} &2\ \text{if }0\leqslant u\leqslant 1, \\ &6-4u\ \text{if }1\leqslant u\leqslant \frac{3}{2}.\\ \end{aligned} \right. \end{align*} $$

Similarly, if $0\leqslant u\leqslant 1$ , then

$$ \begin{align*}P(u,v)&=\left\{\begin{aligned} &(2-v)\mathbf{e}_1+2\ell_1+\ell_2,\ \text{if }0\leqslant v\leqslant 1, \\ &(2-v)\mathbf{e}_1+(3-v)\ell_1+\ell_2,\ \text{if }1\leqslant v\leqslant 2, \\ \end{aligned} \right. \\[4pt]N(u,v)&=\left\{\begin{aligned} &0,\ \text{if }0\leqslant v\leqslant 1, \\ &(v-1)\ell_1,\ \text{if }1\leqslant v\leqslant 2,\\ \end{aligned} \right. \\P(u,v)\cdot\mathbf{e}_1&=\left\{\begin{aligned} &\frac{v+2}{2},\ \text{if }0\leqslant v\leqslant 1, \\ &\frac{4-v}{2},\ \text{if }1\leqslant v\leqslant 2, \\ \end{aligned} \right.\\[4pt]\mathrm{vol}\big(P(u)\big\vert_{S}-v\mathbf{e}_1\big)&=\left\{\begin{aligned} &\frac{10-4v-v^2}{2},\ \text{if }0\leqslant v\leqslant 1, \\ &\frac{(2-v)(6-v)}{2},\ \text{if }1\leqslant v\leqslant 2.\\ \end{aligned} \right. \end{align*} $$

Likewise, if $1\leqslant u\leqslant \frac {3}{2}$ , then

$$ \begin{align*}P(u,v)&=\left\{\begin{aligned} &(6-4u-v)\mathbf{e}_1+(5-3u)\ell_1+(2-u)\ell_2,\ \text{if }0\leqslant v\leqslant 3-2u, \\ &(6-4u-v)\mathbf{e}_1+(8-5u-v)\ell_1+(2-u)\ell_2,\ \text{if }3-2u\leqslant v\leqslant 6-4u, \\ \end{aligned} \right. \\[4pt]N(u,v)&=\left\{\begin{aligned} &0,\ \text{if }0\leqslant v\leqslant 3-2u, \\ &(v+2u-3)\ell_1,\ \text{if }3-2u\leqslant v\leqslant 6-4u,\\ \end{aligned} \right.\\[4pt]P(u,v)\cdot\mathbf{e}_1&=\left\{\begin{aligned} &\frac{4+v-2u}{2},\ \text{if }0\leqslant v\leqslant 3-2u, \\ &\frac{10-6u-v}{2},\ \text{if }3-2u\leqslant v\leqslant 6-4u, \\ \end{aligned} \right. \\[4pt]\mathrm{vol}\big(P(u)\big\vert_{S}-v\mathbf{e}_1\big)&=\left\{\begin{aligned} &\frac{66+24u^2+4uv-v^2-80u-8v}{2},\ \text{if }0\leqslant v\leqslant 3-2u, \\ &\frac{(6-4u-v)(14-8u-v)}{2},\ \text{if }3-2u\leqslant v\leqslant 6-4u.\\ \end{aligned} \right. \end{align*} $$

Integrating, we get $S(W_{\bullet ,\bullet }^S;\mathbf {e}_1)=\frac {137}{144}$ and $S(W_{\bullet , \bullet ,\bullet }^{S,\mathbf {e}_1};P)=\frac {59}{96}+F_P(W_{\bullet ,\bullet ,\bullet }^{S,\mathbf {e}_1})$ . To compute $F_P(W_{\bullet ,\bullet ,\bullet }^{S,\mathbf {e}_1})$ , we let $Z=E_2\vert _{S}$ . Then Z is a smooth curve of genus $3$ such that $\pi (Z)$ is a smooth quartic in $\mathbb {P}^2_{x,y,z}$ . Moreover, the curve Z is contained in the smooth locus of the surface S, and

$$ \begin{align*}Z\sim\left\{\begin{aligned} &4\mathbf{e}_1+\ell_3+\ell_4+2\ell_1\ \text{in (}\mathbb{A}_1\text{)-case}, \\ &2\ell_1+2\ell_2+2\mathbf{e}_1+2\mathbf{e}_2\ \text{in (}2\mathbb{A}_1\text{)-case}. \\ \end{aligned} \right. \end{align*} $$

In particular, we have $Z\cdot \mathbf {e}_1=1$ . Since $\mathbf {e}_1\not \subset Z$ , we have

$$ \begin{align*}N_S^\prime(u)=\left\{\begin{aligned} &0,\ \text{if }0\leqslant u\leqslant 1, \\ &(u-1)Z,\ \text{if }1\leqslant u\leqslant \frac{3}{2}.\\ \end{aligned} \right. \end{align*} $$

Note that $P\in Z$ , because $P\in E_1\cap E_2$ . Thus, since $\mathbf {e}_1\cdot Z=1$ and $\mathbf {e}_1\cdot \ell _1=1$ , we have

$$ \begin{align*} F_P\big(W_{\bullet,\bullet,\bullet}^{S,\mathbf{e}_1}\big)&=\frac{1}{3}\int_1^{\frac{3}{2}}\!\int_0^{6-4u}\!\big(P(u,v)\cdot \mathbf{e}_1\big)(u-1)dvdu+\frac{1}{3}\int_0^{\frac{3}{2}}\!\int_0^{t(u)}\!\big(P(u,v)\cdot \mathbf{e}_1\big)\big(N(u,v)\cdot \mathbf{e}_1\big)dvdu=\\&=\frac{1}{3}\int_1^{\frac{3}{2}}\int_0^{3-2u}\frac{(4+v-2u)(u-1)}{2}dvdu+\frac{1}{3}\int_1^{\frac{3}{2}}\!\int_{3-2u}^{6-4u}\frac{(10-6u-v)(u-1)}{2}dvdu+\\& \quad +\frac{1}{3}\int_0^{1}\int_1^{2}\frac{(4-v)(v-1)}{2}dvdu+\frac{1}{3}\int_1^{\frac{3}{2}}\!\int_{3-2u}^{6-4u}\frac{(10-6u-v)(v+2u-3)}{2}dvdu=\frac{71}{288}, \end{align*} $$

so that $S(W_{\bullet , \bullet ,\bullet }^{S,\mathbf {e}_1};P)=\frac {31}{36}$ . Now, applying Corollary 13, we get $\delta _P(X)>1$ , because $S_X(S)<1$ . Therefore, we see that $\beta (\mathbf {F})>0$ . By [Reference Fujita11], [Reference Li13], this completes the proof of Main Theorem.

Remark 22. Instead of using Corollary 13, we can finish the proof of Main Theorem as follows. Let F be a divisor over S such that $P\in C_S(F)$ , and let $\mathcal {C}$ be a fiber of the conic bundle $\pi _2\vert _{S}$ . Then, arguing as in the proof of Corollary 10, we get

$$ \begin{align*}S\big(W^S_{\bullet,\bullet};F\big)\leqslant \Bigg(\frac{7}{288}+\frac{5}{6\delta_P(S)}\Bigg)A_S(F)+\frac{1}{6}\int_{1}^{\frac{3}{2}}\int_0^\infty\mathrm{vol}\big((2-u)\mathcal{C}+(3-2u)H_3\big\vert_{S}-vF\big)dvdu. \end{align*} $$

But $\delta _P(S)=1$ by Lemmas 25 and 26, since $P=\mathbf {e}_1\cap \ell _1$ . Thus, we have

(♡) $$ \begin{align} S\big(W^S_{\bullet,\bullet};F\big)&\leqslant\frac{247}{288}A_S(F)+\frac{1}{6}\int_{1}^{\frac{3}{2}}\int_0^\infty\mathrm{vol}\big((2-u)\mathcal{C}+(3-2u)H_3\big\vert_{S}-vF\big)dvdu=\\&=\frac{247}{288}A_S(F)+\frac{1}{6}\int_{1}^{\frac{3}{2}}(3-2u)^3\int_0^\infty\mathrm{vol}\Bigg(\frac{2-u}{3-2u}\mathcal{C}+H_3\big\vert_{S}-vF\Bigg)dvdu=\nonumber\\&=\frac{247}{288}A_S(F)+\frac{1}{6}\int_{1}^{\frac{3}{2}}(3-2u)^3\int_0^\infty\mathrm{vol}\Bigg(-K_S+\frac{u-1}{3-2u}\mathcal{C}-vF\Bigg)dvdu.\nonumber \end{align} $$

Set $L=-K_S+t\mathcal {C}$ for $t\in \mathbb {R}_{\geqslant 0}$ . Then L is ample and $L^2=5+4t$ . Define $\delta _P(S,L)$ as in Appendix 1. Then, applying [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.24] to the flag $P\in \mathbf {e}_1\subset S$ , we get

$$ \begin{align*}\delta_P(S,L)\geqslant \left\{\begin{aligned} &1,\ \text{if }0\leqslant t\leqslant \frac{-3+\sqrt{21}}{6}, \\ &\frac{15+12t}{6t^2+18t+13},\ \text{if }\frac{-3+\sqrt{21}}{6}\leqslant t.\\ \end{aligned} \right. \end{align*} $$

The proof of this inequality is very similar to our computations of $S(W_{\bullet ,\bullet }^S;\mathbf {e}_1)$ and $S(W_{\bullet , \bullet ,\bullet }^{S,\mathbf {e}_1};P)$ , so that we omit the details. Now, we let $t=\frac {u-1}{3-2u}$ . Then $t\geqslant \frac {-3+\sqrt {21}}{6}\iff u\geqslant \frac {3}{2}(1-\frac {1}{\sqrt {21}})$ , so

$$ \begin{align*} &\frac{1}{6}\int_{1}^{\frac{3}{2}}(3-2u)^3\int_0^\infty\mathrm{vol}\big(-K_S+t\mathcal{C}-vF\big)dvdu=\\& \quad =\frac{1}{6}\int_{1}^{\frac{3}{2}}(3-2u)^3(5+4t)S_{L}(F)du\leqslant \frac{1}{6}\int_{1}^{\frac{3}{2}(1-\frac{1}{\sqrt{21}})}(3-2u)^3(5+4t)A_S(F)du+\\& \qquad +\frac{1}{6}\int_{\frac{3}{2}(1-\frac{1}{\sqrt{21}})}^{\frac{3}{2}}(3-2u)^3(5+4t)\frac{15+12t}{6t^2+18t+13}A_{S}(F)du=\frac{247}{2,016}A_{S}(F). \end{align*} $$

Now, using (), we get $S(W^S_{\bullet ,\bullet };F)\leqslant \frac {247}{288}A_S(F)+\frac {247}{2,016}A_{S}(F)=\frac {247}{252}A_S(F)$ . Then $\delta _{P}(S;W^S_{\bullet ,\bullet })\geqslant \frac {252}{247}$ , so that $\delta _P(X)>1$ by (3.1), since $S_X(S)<1$ by [Reference Fujita10, Th. 10.1].

Appendix A $\delta $ -invariants of del Pezzo surfaces

In this appendix, we present three rather sporadic results about $\delta $ -invariants of del Pezzo surfaces with at most du Val singularities, which are used in the proof of Main Theorem.

Let S be a del Pezzo surface that has at most du Val singularities, let L be an ample $\mathbb {R}$ -divisor on the surface S, and let P be a point in S. Set

$$ \begin{align*}\delta_P(S,L)=\inf_{\substack{F/S\\ P\in C_S(F)}}\frac{A_{S}(F)}{S_{L}(F)}, \end{align*} $$

where infimum is taken over all prime divisors F over S such that $P\in C_S(F)$ , and

$$ \begin{align*}S_{L}(F)=\frac{1}{L^2}\int_0^\infty \mathrm{vol}\big(L-uF\big)du. \end{align*} $$

Example 23. Suppose that S is a smooth cubic surface in $\mathbb {P}^3$ and that $L=-K_S$ . Let T be the hyperplane section of the cubic surface S that is singular at P. Then it follows from [Reference Abban and Zhuang1, Th. 4.6] that

$$ \begin{align*}\delta_P(S,L)=\left\{\begin{aligned} &\frac{3}{2},\ \text{if }T\text{ is a union of three lines such that all of them contains }P,\\ &\frac{27}{17},\ \text{if }T\text{ is a~union of a~line and a~conic that are tangent at }P,\\ &\frac{5}{3},\ \text{if }T\text{ is an irreducible cuspidal cubic curve},\\ &\frac{18}{11},\ \text{if }T\text{ is a union of three lines such that only two of them contain }P,\\ &\frac{9}{25-8\sqrt{6}},\ \text{if }T\text{ is a~union of a~line and a~conic that intersect transversally at }P,\\ &\frac{12}{7},\ \text{if }T\text{ is an irreducible nodal cubic curve}. \end{aligned} \right. \end{align*} $$

It would be nice to find an explicit formula for $\delta _P(S,L)$ in all possible cases. But this problem seems to be very difficult. So, we will only estimate $\delta _P(S,L)$ in three cases when $K_S^2\in \{4,5\}$ .

Suppose that $4\leqslant K_S^2\leqslant 5$ . Let us identify S with its image in the anticanonical embedding.

Lemma 24. Suppose that S is smooth and $K_S^2=4$ . Let C be a possibly reducible conic in S that passes through P, and let $L=-K_S+tC$ for $t\in \mathbb {R}_{\geqslant 0}$ . If the conic C is smooth, then

(♣) $$ \begin{align} \delta_P(S,L)\geqslant \begin{cases} &\frac{24}{19+8t+t^2},\ \text{if }0\leqslant t\leqslant 1, \\ &\frac{6(1+t)}{5+6t+3t^2},\ \text{if }t\geqslant 1. \end{cases} \end{align} $$

Similarly, if C is a reducible conic, then

(♠) $$ \begin{align} \delta_L(S,L)\geqslant \frac{24(1+t)}{19+30t+12t^2}. \end{align} $$

Proof. The proof of this lemma is similar to the proof of [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Lem. 2.12]. Namely, as in that proof, we will apply [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Th. 1.7.1], [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.12], and [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.25] to get () and (). Let us use notations introduced in [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Sect. 1] applied to S polarized by the ample divisor L.

First, we suppose that P is not contained in any line in S. In particular, the conic C is smooth. Let $\sigma \colon \widetilde {S}\to S$ be the blowup of the point P, let E be the exceptional curve of the blowup $\sigma $ , and let $\widetilde {C}$ be the proper transform on $\widetilde {S}$ of the conic C. Then $\widetilde {S}$ is a smooth cubic surface in $\mathbb {P}^3$ , and there exists a unique line $\mathbf {l}\subset \widetilde {S}$ such that $-K_{\widetilde {S}}\sim \widetilde {C}+E+\mathbf {l}$ . Take $u\in \mathbb {R}_{\geqslant 0}$ . Then

$$ \begin{align*}\sigma^*(L)-uE\sim_{\mathbb{R}}(1+t)\widetilde{C}+(2+t-u)E+\mathbf{l}, \end{align*} $$

which implies that $\sigma ^*(L)-uE$ is pseudoeffective $\iff u\leqslant 2+t$ . Similarly, we see that

$$ \begin{align*}\mathscr{P}(u)&\sim_{\mathbb{R}}\left\{\begin{aligned} &(1+t)\widetilde{C}+(2+t-u)E+\mathbf{l},\ \text{if }0\leqslant u\leqslant 2, \\ &(3+t-u)\widetilde{C}+(2+t-u)E+\mathbf{l},\ \text{if }2\leqslant u\leqslant2+t, \\ \end{aligned} \right.\\[8pt]\mathscr{N}(u)&=\left\{\begin{aligned} &0,\ \text{if }0\leqslant u\leqslant 2, \\ &(u-2)\widetilde{C},\ \text{if }2\leqslant u\leqslant 2+t,\\ \end{aligned} \right.\\[8pt]\mathscr{P}(u)\cdot E&=\left\{\begin{aligned} &u,\ \text{if }0\leqslant u\leqslant 2, \\ &2,\ \text{if }2\leqslant u\leqslant2+t, \\ \end{aligned} \right.\\[8pt]\mathrm{vol}\big(\sigma^*(L)-uE\big)&=\left\{\begin{aligned} &4+4t-u^2,\ \text{if }0\leqslant u\leqslant 2, \\ &4(2+t-u),\ \text{if }2\leqslant u\leqslant2+t, \\ \end{aligned} \right. \end{align*} $$

where we denote by $\mathscr {P}(u)$ the positive part of the Zariski decomposition of the divisor $\sigma ^*(L)-uE$ , and we denote by $\mathscr {N}(u)$ its negative part. This gives

$$ \begin{align*}S_L(E)=\frac{8+12t+3t^2}{6(1+t)}. \end{align*} $$

Moreover, applying [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.25], we obtain

$$ \begin{align*}S(W^E_{\bullet,\bullet};Q)\leqslant\frac{4+6t+3t^2}{6(1+t)} \end{align*} $$

for every point $Q\in E$ . Note that $A_S(E)=2$ . Thus, it follows from [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.12] that

$$ \begin{align*}\delta_P(S,L)\geqslant\frac{6(1+t)}{4+6t+3t^2}>\frac{24}{19+8t+t^2}. \end{align*} $$

To complete the proof of the lemma, we may assume that S contains a line $\ell $ such that $P\in \ell $ . Then $\ell \cdot C=0$ or $\ell \cdot C=1$ . If $\ell \cdot C=0$ , then $\ell $ must be an irreducible component of the conic C. Let us apply [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Th. 1.7.1] and [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.25] to the flag $P\in \ell $ to estimate $\delta _P(S,L)$ . Take $u\in \mathbb {R}_{\geqslant 0}$ . Let $P(u)$ be the positive part of the Zariski decomposition of the divisor $L-u\ell $ , and let $N(u)$ be its negative part. We must compute $P(u)$ , $N(u)$ , $P(u)\cdot \ell $ , and $\mathrm {vol}(L-u\ell )$ .

There exists a birational morphism $\pi \colon S\to \mathbb {P}^2$ that blows up five points $O_1,\dots ,O_5\in \mathbb {P}^2$ such that no three of them are collinear. For every $i\in \{1,\ldots ,5\}$ , let $\mathbf {e}_i$ be the $\pi $ -exceptional curve such that $\pi (\mathbf {e}_i)=O_i$ . Similarly, let $\mathbf {l}_{ij}$ be the strict transform of the line in $\mathbb {P}^2$ that contains $O_i$ and $O_j$ , where $1\leqslant i<j\leqslant 5$ . Finally, let B be the strict transform of the conic on $\mathbb {P}^2$ that passes through the points $O_1,\dots ,O_5$ . Then $\mathbf {e}_1,\ldots ,\mathbf {e}_5,\mathbf {l}_{12},\ldots ,\mathbf {l}_{45},B$ are all lines in S, and each extremal ray of the Mori cone $\overline {\mathrm {NE}}(S)$ is generated by a class of one of these $16$ lines.

Suppose that the conic C is irreducible. Then $C\cdot \ell =1$ . In this case, without loss of generality, we may assume that $\ell =\mathbf {e}_1$ and $C\sim \mathbf {l}_{12}+\mathbf {e}_2$ . If $0\leqslant t\leqslant 1$ , then

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &L-u\ell,\ \text{if }0\leqslant u\leqslant 1, \\ &L-u\ell-(u-1)(\mathbf{l}_{12}+\mathbf{l}_{13}+\mathbf{l}_{14}+\mathbf{l}_{15}),\ \text{if }1\leqslant u\leqslant 1+t, \\ &L-u\ell-(u-1)(\mathbf{l}_{12}+\mathbf{l}_{13}+\mathbf{l}_{14}+\mathbf{l}_{15})-(u-t-1)B, \ \text{if }1+t\leqslant u\leqslant\frac{3+t}{2}, \\ \end{aligned} \right. \\[5pt]N(u)&=\left\{\begin{aligned} &0, \ \text{if }0\leqslant u\leqslant 1, \\ &(u-1)(\mathbf{l}_{12}+\mathbf{l}_{13}+\mathbf{l}_{14}+\mathbf{l}_{15}),\ \text{if }1\leqslant u\leqslant 1+t, \\ &(u-1)(\mathbf{l}_{12}+\mathbf{l}_{13}+\mathbf{l}_{14}+\mathbf{l}_{15})+(u-t-1)B, \ \text{if }1+t\leqslant u\leqslant\frac{3+t}{2}, \\ \end{aligned} \right.\\[5pt]P(u)\cdot\ell&=\left\{\begin{aligned} &1+t+u,\ \text{if }0\leqslant u\leqslant 1, \\ &5+t-3u,\ \text{if }1\leqslant u\leqslant 1+t, \\ &6+2t-4u,\ \text{if }1+t\leqslant u\leqslant\frac{3+t}{2}, \\ \end{aligned} \right.\\[5pt]\mathrm{vol}\big(L-u\ell\big)&=\left\{\begin{aligned} &4(1+t)-2u(1+t)-u^2, \ \text{if }0\leqslant u\leqslant 1, \\ &(2-u)(4+2t-3u),\ \text{if }1\leqslant u\leqslant 1+t, \\ &(3+t-2u)^2,\ \text{if }1+t\leqslant u\leqslant\frac{3+t}{2}, \\ \end{aligned} \right.\end{align*} $$

and $L-u\ell $ is not pseudoeffective for $u>\frac {3+t}{2}$ . Similarly, if $t\geqslant 1$ , then

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &L-u\ell,\ \text{if }0\leqslant u\leqslant 1, \\ &L-u\ell-(u-1)(\mathbf{l}_{12}+\mathbf{l}_{13}+\mathbf{l}_{14}+\mathbf{l}_{15}),\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \\[6pt]N(u)&=\left\{\begin{aligned} &0, \ \text{if }0\leqslant u\leqslant 1, \\ &(u-1)(\mathbf{l}_{12}+\mathbf{l}_{13}+\mathbf{l}_{14}+\mathbf{l}_{15}), \ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\\[6pt]P(u)\cdot\ell&=\left\{\begin{aligned} &1+t+u,\ \text{if }0\leqslant u\leqslant 1, \\ &5+t-3u,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\\[6pt]\mathrm{vol}\big(L-u\ell\big)&=\left\{\begin{aligned} &4(1+t)-2u(1+t)-u^2, \ \text{if }0\leqslant u\leqslant 1, \\ &(2-u)(4+2t-3u),\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \end{align*} $$

and $L-u\ell $ is not pseudoeffective for $u>2$ . Then

$$ \begin{align*}S_L\big(\ell\big)= \left\{\begin{aligned} &\frac{17+4t-t^2}{24},\ \text{if }0\leqslant t\leqslant 1, \\ &\frac{2+3t}{3(1+t)},\ \text{if }t\geqslant 1. \\ \end{aligned} \right. \end{align*} $$

Observe that $P\not \in \mathbf {l}_{ij}$ for every $1\leqslant i<j\leqslant 5$ . Thus, if $t\leqslant 1$ , then [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.25] gives

$$ \begin{align*}S(W^{\ell}_{\bullet,\bullet};P)= \left\{\begin{aligned} &\frac{19+8t+t^2}{24},\ \text{if }P\in B, \\ &\frac{9+15t+3t^2+t^3}{12(1+t)},\ \text{if }P\not\in B. \\ \end{aligned} \right. \end{align*} $$

Similarly, if $t\geqslant 1$ , then [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.25] gives

$$ \begin{align*}S\big(W^{\ell}_{\bullet,\bullet};P\big)=\frac{5+6t+3t^2}{6(1+t)}. \end{align*} $$

Now, using [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Th. 1.7.1], we get ().

To complete the proof of the lemma, we may assume that the conic C is reducible. In this case, we let $\ell $ be an irreducible component of the conic C that contains P. Without loss of generality, we may assume that $\ell =\mathbf {e}_1$ and $C=\mathbf {e}_1+B$ . Then

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &L-u\ell,\ \text{if }0\leqslant u\leqslant 1, \\ &L-u\ell-(u-1)B,\ \text{if }1\leqslant u\leqslant 1+t, \\ &L-u\ell-(u-t-1)(\mathbf{l}_{12}+\mathbf{l}_{13}+\mathbf{l}_{14}+\mathbf{l}_{15})-(u-1)B, \ \text{if }1+t\leqslant u\leqslant\frac{3+2t}{2}, \\ \end{aligned} \right. \\[4pt]N(u)&=\left\{\begin{aligned} &0, \ \text{if }0\leqslant u\leqslant 1, \\ &(u-1)B,\ \text{if }1\leqslant u\leqslant 1+t, \\ &(u-t-1)(\mathbf{l}_{12}+\mathbf{l}_{13}+\mathbf{l}_{14}+\mathbf{l}_{15})+(u-1)B, \ \text{if }1+t\leqslant u\leqslant\frac{3+2t}{2}, \\ \end{aligned} \right.\\[4pt]P(u)\cdot\ell&=\left\{\begin{aligned} &1+u,\ \text{if }0\leqslant u\leqslant 1, \\ &2,\ \text{if }1\leqslant u\leqslant 1+t, \\ &6+4t-4u,\ \text{if }1+t\leqslant u\leqslant\frac{3+2t}{2}, \\ \end{aligned} \right. \\[4pt]\mathrm{vol}\big(L-u\ell\big)&=\left\{\begin{aligned} &4(1+t)-2u-u^2,\ \text{if }0\leqslant u\leqslant 1, \\ &5+4t-4u,\ \text{if }1\leqslant u\leqslant 1+t, \\ &(3+2t-2u)^2,\ \text{if }1+t\leqslant u\leqslant\frac{3+2t}{2}, \\ \end{aligned} \right. \end{align*} $$

and the divisor $L-u\ell $ is not pseudoeffective for $u>\frac {3+2t}{2}$ . This gives

$$ \begin{align*}S_L\big(\ell\big)=\frac{17+30t+12t^2}{24(1+t)}. \end{align*} $$

Moreover, using [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.25], we compute

$$ \begin{align*}S\big(W^{\ell}_{\bullet,\bullet};P\big)= \left\{\begin{aligned} &\frac{19+30t+12t^2}{24(1+t)},\ \text{if }P\in B, \\ &\frac{19+24t}{24(1+t)},\ \text{if }P\in\mathbf{l}_{12}\cup\mathbf{l}_{13}\cup\mathbf{l}_{14}\cup\mathbf{l}_{15}, \\ &\frac{3+4t}{4(1+t)},\ \text{otherwise}. \\ \end{aligned} \right. \end{align*} $$

Now, using [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Th. 1.7.1], we get () as claimed.

In the remaining part of this appendix, we suppose that $K_S^2=5$ , $L=-K_S$ , and S has isolated ordinary double points, that is, singular points of type $\mathbb {A}_1$ . As usual, we set $\delta _P(S)=\delta _P(S,-K_S)$ and

$$ \begin{align*}\delta(S)=\inf_{P\in S}\delta_P(S). \end{align*} $$

Let $\eta \colon \widetilde {S}\to S$ be the minimal resolution of the quintic del Pezzo surface S. Since $-K_{\widetilde {S}}\sim \eta ^*(-K_S)$ , we can estimate the number $\delta _P(S)$ as follows. Let O be a point in the surface $\widetilde {S}$ such that $\eta (O)=P$ , and let C be a smooth irreducible rational curve in $\widetilde {S}$ such that:

  • If $P\in \mathrm {Sing}(S)$ , then C is the $\eta $ -exceptional curve such that $\eta (C)=P$ .

  • If $P\not \in \mathrm {Sing}(S)$ , then C is appropriately chosen curve that contains O.

As usual, we set

$$ \begin{align*}\tau=\mathrm{sup}\Big\{u\in\mathbb{Q}_{\geqslant 0}\ \big\vert\ \text{the divisor }-K_{\widetilde{S}}-uC\text{ is pseudoeffective}\Big\}. \end{align*} $$

For $u\in [0,\tau ]$ , let $P(u)$ be the positive part of the Zariski decomposition of the divisor $-K_{\widetilde {S}}-uC$ , and let $N(u)$ be its negative part. Let

$$ \begin{align*}S_{S}(C)=\frac{1}{K_S^2}\int_{0}^{\infty}\mathrm{vol}\big(-K_{\widetilde{S}}-uC\big)du=\frac{1}{K_S^2}\int_{0}^{\tau}P(u)^2du, \end{align*} $$

and let

$$ \begin{align*}S\big(W^{C}_{\bullet,\bullet},O\big)= \frac{2}{K_S^2}\int_0^\tau\big(P(u)\cdot C\big)\mathrm{ord}_O\big(N(u)\big\vert_{C}\big)du +\frac{1}{K_S^2}\int_0^\tau(P(u)\cdot C)^2du. \end{align*} $$

If $P\not \in \mathrm {Sing}(S)$ , then [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Th. 1.7.1] and [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.25] give

(⧫) $$ \begin{align} \frac{1}{S_S(C)}\geqslant\delta_P(S)\geqslant\min\left\{\frac{1}{S_S(C)},\frac{1}{S\big(W^{C}_{\bullet,\bullet},O\big)}\right\}. \end{align} $$

Similarly, if $P\in \mathrm {Sing}(S)$ , then [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.12] and [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, Cor. 1.7.25] give

(♢) $$ \begin{align} \frac{1}{S_S(C)}\geqslant\delta_P(S)\geqslant\min\left\{\frac{1}{S_S(C)},\inf_{O\in C}\frac{1}{S\big(W^{C}_{\bullet,\bullet},O\big)}\right\}. \end{align} $$

Lemma 25. Suppose that S has one singular point. Then $\delta (S)=\frac {15}{17}$ , and the following assertions hold:

  • If P is not contained in any line in S that contains the singular point of S, then $\delta _P(S)\geqslant \frac {15}{13}$ .

  • If P is not the singular point of the surface S, but P is contained in a line in S that passes through the singular point of the surface S, then $\delta _P(S)=1$ .

  • If P is the singular point of the surface S, then $\delta _P(S)=\frac {15}{17}$ .

Proof. We let $P_0$ be the singular point of the surface S, and let $\ell _0$ be the $\pi $ -exceptional curve. Then it follows from [Reference Coray and Tsfasman8] that there exists a birational morphism $\pi \colon \widetilde {S}\to \mathbb {P}^2$ such that $\pi (\ell _0)$ is a line, the map $\pi $ blows up three points $Q_1$ , $Q_2$ , and $Q_3$ contained in $\pi (\ell _0)$ and another point $Q_0\in \mathbb {P}^2\setminus \pi (\ell _0)$ .

For $i\in \{0,1,2,3\}$ , let $\mathbf {e}_i$ be the $\pi $ -exceptional curve such that $\pi (\mathbf {e}_i)=Q_i$ . For every $i\in \{1,2,3\}$ , let $\ell _i$ be the strict transform of the line in $\mathbb {P}^2$ that passes through $Q_0$ and $Q_i$ . Then $\ell _0$ , $\ell _1$ , $\ell _2$ , $\ell _3$ , $\mathbf {e}_0$ , $\mathbf {e}_1$ , $\mathbf {e}_2$ , and $\mathbf {e}_3$ are the only irreducible curves in the surface $\widetilde {S}$ that have negative self-intersections. Moreover, the intersections of these curves are given in the following table:

Note that $\eta (\ell _1)$ , $\eta (\ell _2)$ , $\eta (\ell _3)$ , $\eta (\mathbf {e}_0)$ , $\eta (\mathbf {e}_1)$ , $\eta (\mathbf {e}_2)$ , and $\eta (\mathbf {e}_3)$ are all lines contained in the surface S. Among them, only the lines $\eta (\mathbf {e}_1)$ , $\eta (\mathbf {e}_2)$ , and $\eta (\mathbf {e}_3)$ pass through the singular point $P_0$ .

For $(a_0,a_1,a_2,a_3,b_0,b_1,b_2,b_3)\in \mathbb {R}^8$ , we write

$$ \begin{align*}[a_0,a_1,a_2,a_3,b_0,b_1,b_2,b_3] := \sum_{i=0}^3 a_i \ell_i + \sum_{i=0}^3 b_i \mathbf{e}_i \in \mathrm{Pic} (\widetilde{S}) \otimes \mathbb{R}. \end{align*} $$

If $P=P_0$ , then $C=\ell _0$ , which implies that $\tau =2$ and

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &[-u, 1, 1, 1, 2, 0, 0, 0],\ \text{if }0\leqslant u\leqslant 1, \\ &[-u, 1, 1, 1, 2, 1-u, 1-u, 1-u],\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \\[6pt]N(u)&=\left\{\begin{aligned} &0,\ \text{if }0\leqslant u\leqslant 1, \\ &(u-1)(\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3),\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\\[6pt]P(u)\cdot C&=\left\{\begin{aligned} &2,\ \text{if }0\leqslant u\leqslant 1, \\ &3 -u,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \quad P(u)^2=\left\{\begin{aligned} &5 - 2 u^2,\ \text{if }0\leqslant u\leqslant 1, \\ &(4-u)(2-u),\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \end{align*} $$

which implies that $S_S(C)=\frac {17}{15}$ and $S(W^{C}_{\bullet , \bullet };O)=1$ . Therefore, using (), we obtain $\delta _{P_0}(S)=\frac {15}{17}$ .

To proceed, we may assume that $P\ne P_0$ . If $O\in \mathbf {e}_0$ , we let $C=\mathbf {e}_0$ . Then $\tau =2$ , and

$$ \begin{align*}P(u)&=\left\{\begin{aligned} & [0, 1, 1, 1, 2-u, 0, 0, 0],\ \text{if }0\leqslant u\leqslant 1, \\ &[0, 2-u, 2-u, 2-u, 2-u, 0, 0, 0],\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \\[6pt]N(u)&=\left\{\begin{aligned} &0,\ \text{if }0\leqslant u\leqslant 1, \\ &(u-1) (\ell_1 + \ell_2 + \ell_3),\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \\[6pt]P(u)\cdot C&=\left\{\begin{aligned} &1+u,\ \text{if }0\leqslant u\leqslant 1, \\ &4-2u,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \quad P(u)^2=\left\{\begin{aligned} &5-2u-u^2,\ \text{if }0\leqslant u\leqslant 1, \\ &2(2-u)^2,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \end{align*} $$

which implies that $S_S(C)=\frac {13}{15}$ and $S(W^{C}_{\bullet , \bullet };O)\leqslant \frac {13}{15}$ , so that $\delta _P(S)=\frac {15}{13}$ by ().

If $O\in \ell _1$ , we let $C=\ell _1$ . In this case, we have $\tau =2$ , and

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &[0, 1-u, 1, 1, 2, 0, 0, 0],\ \text{if }0\leqslant u\leqslant 1, \\ &[1-u, 1-u, 1, 1, 3-u, 2-2u, 0, 0],\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \\[6pt]N(u)&=\left\{\begin{aligned} &0,\ \text{if }0\leqslant u\leqslant 1, \\ &(u-1)(\ell_0+\mathbf{e}_0+2\mathbf{e}_1),\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\\ [6pt]P(u)\cdot C&=\left\{\begin{aligned} &1+u,\ \text{if }0\leqslant u\leqslant 1, \\ &4-2u,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \quad P(u)^2=\left\{\begin{aligned} &5-2u-u^2,\ \text{if }0\leqslant u\leqslant 1, \\ &2(2-u)^2,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\end{align*} $$

so that $S_S(C)=\frac {13}{15}$ . If $O\in \ell _1\setminus (\mathbf {e}_0\cup \mathbf {e}_1)$ , then $S(W^{C}_{\bullet , \bullet };O)=\frac {11}{15}$ . If $O=\ell _1\cap \mathbf {e}_1$ , then $S(W^{C}_{\bullet , \bullet };O)=1$ . Thus, using (), we see that $\delta _P(S)=\frac {15}{13}$ if $O\in \ell _1\setminus \mathbf {e}_1$ , and $\delta _P(S)\geqslant 1$ if $O=\ell _1\cap \mathbf {e}_1$ .

Similarly, $\delta _P(S)=\frac {15}{13}$ if $O\in \ell _2\setminus \mathbf {e}_2$ or $O\in \ell _3\setminus \mathbf {e}_3$ , and $\delta _P(S)\geqslant 1$ if $O=\ell _2\cap \mathbf {e}_2$ or $O=\ell _3\cap \mathbf {e}_3$ .

If $O\in \mathbf {e}_1$ , we let $C=\mathbf {e}_1$ . In this case, we have $\tau =2$ , and

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &\Big[-\frac{u}{2}, 1, 1, 1, 2, -u, 0, 0\Big],\ \text{if }0\leqslant u\leqslant 1, \\ &\Big[-\frac{u}{2}, 2-u, 1, 1, 2, -u, 0, 0\Big],\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \\[6pt]N(u)&=\left\{\begin{aligned} &\frac{u}{2} \ell_0,\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{u}{2} \ell_0 + (u-1) \ell_1,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\\[6pt]P(u)\cdot C&=\left\{\begin{aligned} &\frac{2+u}{2},\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{4 - u}{2},\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \quad P(u)^2=\left\{\begin{aligned} &5-2u-\frac{u^2}{2},\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{(6-u)(2-u)}{2}, \ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \end{align*} $$

which implies that $S_S(C)=1$ and $S(W^{C}_{\bullet , \bullet };O)\leqslant \frac {13}{15}$ if $O\in \mathbf {e}_1\setminus \ell _0$ , so that $\delta _P(S)=1$ by ().

Likewise, we see that $\delta _P(S)=1$ in the case when $O\in \mathbf {e}_2$ or $O\in \mathbf {e}_3$ . Thus, to complete the proof, we may assume that P is not contained in any line in S.

Now, we let C be the unique curve in the pencil $|\ell _1+\mathbf {e}_1|$ that contains P. By our assumption, the curve C is smooth and irreducible. Then $\tau =2$ , and

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &\Big[-\frac{u}{2}, 1-u, 1, 1, 2, -u, 0, 0\Big],\ \text{if }0\leqslant u\leqslant 1, \\ &\Big[-\frac{u}{2}, 1-u, 1, 1, 3-u, -u, 0, 0\Big],\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \\[6pt]N(u)&=\left\{\begin{aligned} &\frac{u}{2} \ell_0,\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{1}{2} u \ell_0 + (u-1)\mathbf{e}_0,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\\[6pt]P(u)\cdot C&=\left\{\begin{aligned} &\frac{4-u}{2},\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{3(2-u)}{2},\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \quad P(u)^2=\left\{\begin{aligned} &5-4u+\frac{u^2}{2},\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{3(2-u)^2}{2},\ \text{if }1\leqslant u\leqslant 2. \\ \end{aligned} \right.\end{align*} $$

Then $S_S(C)=\frac {11}{15}$ and $S(W^{C}_{\bullet , \bullet };O)=\frac {23}{30}$ . Thus, it follows from () that $\delta _P (S)\geqslant \frac {30}{23}>\frac {15}{13}$ .

Finally, let us estimate $\delta _P(S)$ in the case when the del Pezzo surface S has two singular points. In this case, the surface S contains a line that passes through both its singular points [Reference Coray and Tsfasman8].

Lemma 26. Suppose S has two singular points. Let $\ell $ be the line in S that passes through both singular points of the surface S. Then $\delta (S)=\frac {15}{19}$ . Moreover, the following assertions hold:

  • If P is not contained in any line in S that contains a singular point of S, then $\delta _P(S)\geqslant \frac {15}{13}$ .

  • If P is not contained in the line $\ell $ , but P is contained in a line in S that passes through a singular point of the surface S, then $\delta _P(S)=1$ .

  • If $P\in \ell $ , then $\delta _P(S)=\frac {15}{19}$ .

Proof. Let $\mathbf {e}_1$ and $\mathbf {e}_2$ be $\eta $ -exceptional curves. Then $\widetilde {S}$ contains $(-1)$ -curves $\ell _1$ , $\ell _2$ , $\ell _3$ , $\ell _4$ , and $\ell _5$ such that the intersections of the curves $\ell _1$ , $\ell _2$ , $\ell _3$ , $\ell _4$ , $\ell _5$ , $\mathbf {e}_1$ , and $\mathbf {e}_2$ on $\widetilde {S}$ are given in the following table.

The curves $\eta (\ell _1)$ , $\eta (\ell _2)$ , $\eta (\ell _3)$ , $\eta (\ell _4)$ , and $\eta (\ell _5)$ are the only lines in S. Moreover, we have $\ell =\eta (\ell _1)$ , and $\eta (\ell _1)$ , $\eta (\ell _2)$ , an $\eta (\ell _5)$ are the only lines in S that contain a singular point of the surface S.

As in the proof of Lemma 25, for $(a_1,a_2,a_3,a_4,a_5,b_1, b_2)\in \mathbb {R}^7$ , we write

$$ \begin{align*}[a_1,a_2,a_3,a_4,a_5,b_1, b_2] := \sum_{i=1}^5 a_i \ell_i + \sum_{i=1}^2 b_i \mathbf{e}_i \in \mathrm{Pic} (\widetilde{S}) \otimes \mathbb{R}. \end{align*} $$

If $O\in \ell _1\setminus (\mathbf {e}_1\cup \mathbf {e}_2)$ , we let $C=\ell _1$ . In this case, we have $\tau =3$ , and

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &\Big[1-u, 1, 1, 1, 1, \frac{2-u}{2}, \frac{2-u}{2}\Big], \ \text{if }0\leqslant u\leqslant 2, \\ &[1-u, 3-u, 3-u, 0, 0, 0],\ \text{if }2\leqslant u\leqslant 3, \\ \end{aligned} \right. \\[6pt]N(u)&=\left\{\begin{aligned} &\frac{u}{2} (\mathbf{e}_1 + \mathbf{e}_2),\ \text{if }0\leqslant u\leqslant 2, \\ &(u-2) (\ell_2 + \ell_5) + (u-1)(\mathbf{e}_1 + \mathbf{e}_2), \ \text{if }2\leqslant u\leqslant 3, \\ \end{aligned} \right. \\[6pt]P(u)\cdot C&=\left\{\begin{aligned} &1, \ \text{if }0\leqslant u\leqslant 2, \\ &3-u, \ \text{if }2\leqslant u\leqslant 3, \\ \end{aligned} \right. \quad P(u)^2=\left\{\begin{aligned} &5 - 2u, \ \text{if }0\leqslant u\leqslant 2, \\ &(3-u)^2, \ \text{if }2\leqslant u\leqslant 3, \\ \end{aligned} \right. \end{align*} $$

which implies that $S_S(C)=\frac {19}{15}$ and $S(W^{C}_{\bullet , \bullet };O)\leqslant \frac {17}{15}$ , so that $\delta _P(S)=\frac {15}{19}$ by ().

If $O\in \mathbf {e}_1$ , then $C=\mathbf {e}_1$ . In this case, we have $\tau =2$ , and

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &[1, 1, 1, 1, 1, 1-u, 1],\ \text{if }0\leqslant u\leqslant 1, \\ &[3-2u, 2-u, 1, 1, 1, 1-u, 2-u],\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\\[6pt]N(u)&=\left\{\begin{aligned} &0,\ \text{if }0\leqslant u\leqslant 1, \\ &2(u-1)\ell_1 + (u-1) \ell_2 + (u-1) \mathbf{e}_2,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\\[6pt]P(u)\cdot C&=\left\{\begin{aligned} &2u,\ \text{if }0\leqslant u\leqslant 1, \\ &3-u,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \quad P(u)^2=\left\{\begin{aligned} & 5-2u^2,\ \text{if }0\leqslant u\leqslant 1, \\ &(2-u)(4-u), \ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \end{align*} $$

which implies that $S_S(C)=\frac {17}{15}$ and $S(W^{C}_{\bullet , \bullet };O)\leqslant \frac {19}{15}$ , so that $\delta _P(S)\geqslant \frac {19}{15}$ by ().

On the other hand, we already know that $S_S(\ell )=\frac {19}{15}$ , which implies that $\delta _P(S)=\frac {19}{15}$ if $P=\eta (\mathbf {e}_1)$ . Similarly, we see that $\delta _P(S)=\frac {19}{15}$ if $P=\eta (\mathbf {e}_2)$ . Hence, we may assume that $O\not \in \mathbf {e}_1\cup \mathbf {e}_2\cup \ell _1$ .

If $O\in \ell _2$ , we let $C=\ell _2$ . In this case, we have $\tau =2$ , and

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &\Big[1, 1-u, 1, 1, 1, \frac{2-u}{2}, 1\Big],\ \text{if }0\leqslant u\leqslant 1, \\ &\Big[1, 1-u, 2-u, 1, 1, \frac{2-u}{2}, 1\Big],\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \\[6pt]N(u)&=\left\{\begin{aligned} &\frac{u}{2} \mathbf{e}_1,\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{u}{2} \mathbf{e}_1 + (u-1) \ell_3,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\\[6pt]P(u)\cdot C&=\left\{\begin{aligned} &\frac{2+u}{2},\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{4-u}{2},\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \quad P(u)^2=\left\{\begin{aligned} & 5-2u - \frac{u^2}{2},\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{(6-u)(2-u)}{2},\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \end{align*} $$

which implies that $S_S(C)=1$ and $S(W^{C}_{\bullet , \bullet };O)\leqslant \frac {13}{15}$ , so that $\delta _P(S)=1$ by ().

Similarly, we see that $\delta _P(S)=1$ if $O\in \ell _5$ . Hence, if P is contained in a line in S that passes through a singular point of the surface S, then $\delta _P(S)=1$ . Thus, we may assume that $O\not \in \ell _2\cup \ell _2$ .

If $P\in \ell _3$ , we let $C=\ell _3$ . In this case, we have $\tau =2$ , and

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &[1, 1, 1-u, 1, 1, 1, 1],\ \text{if }0\leqslant u\leqslant 1, \\ & [1, 3-2u, 1-u, 2-u, 1, 2-u, 1],\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \\[6pt]N(u)&=\left\{\begin{aligned} &0,\ \text{if }0\leqslant u\leqslant 1, \\ & (u-1) (\ell_4 + 2 \ell_2 + \mathbf{e}_1),\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\\[6pt]P(u)\cdot C&=\left\{\begin{aligned} &1+u,\ \text{if }0\leqslant u\leqslant 1, \\ &4-2u,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \quad P(u)^2=\left\{\begin{aligned} &5-2u - u^2,\ \text{if }0\leqslant u\leqslant 1, \\ &2(2-u)^2,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \end{align*} $$

which implies that $S_S(C)=\frac {13}{15}$ and $S(W^{C}_{\bullet , \bullet };O)\leqslant \frac {13}{15}$ , so that $\delta _P(S)=\frac {15}{13}$ by ().

Similarly, we see that $\delta _P(S)=\frac {15}{13}$ if $O\in \ell _4$ . Therefore, we may also assume that $O\not \in \ell _3\cup \ell _4$ .

Let C be the curve in the pencil $|\ell _2 + \ell _3|$ that contains O. Then C is smooth and irreducible, since O is not contained in the curves $\ell _1$ , $\ell _2$ , $\ell _3$ , $\ell _4$ , $\ell _5$ , $\mathbf {e}_1$ , and $\mathbf {e}_2$ by assumption. Then $\tau =2$ , and

$$ \begin{align*}P(u)&=\left\{\begin{aligned} &\Big[1, 1-u, 1-u, 1, 1, \frac{2-u}{2}, 1\Big],\ \text{if }0\leqslant u\leqslant 1, \\ &\Big[1, 1-u, 1-u, 2-u, 1, \frac{2-u}{2}, 1\Big],\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \\[6pt]N(u)&=\left\{\begin{aligned} &\frac{u}{2} \mathbf{e}_1,\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{u}{2} \mathbf{e}_1 + (u-1) \ell_4,\ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right.\\[6pt]P(u)\cdot C&=\left\{\begin{aligned} &\frac{4-u}{2},\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{3(2-u)}{2}, \ \text{if }1\leqslant u\leqslant 2, \\ \end{aligned} \right. \quad P(u)^2=\left\{\begin{aligned} &5-4u+\frac{u^2}{2},\ \text{if }0\leqslant u\leqslant 1, \\ &\frac{3(2-u)^2}{2},\ \text{if }1\leqslant u\leqslant 2. \\ \end{aligned} \right. \end{align*} $$

This implies that $S_S(C)=\frac {11}{15}$ and $S(W^{C}_{\bullet , \bullet };O)=\frac {23}{30}$ , so that $\delta _P(S)\geqslant \frac {30}{23}>\frac {15}{13}$ by ().

Appendix B Nemuro lemma

Now, let X be any smooth Fano threefold, let $\pi \colon X\to \mathbb {P}^1$ be a fibration into del Pezzo surfaces, let S be a fiber of the morphism $\pi $ such that S is an irreducible reduced normal del Pezzo surface that has at worst du Val singularities, and let P be a point in S. As in §3, set

$$ \begin{align*}\tau=\mathrm{sup}\Big\{u\in\mathbb{Q}_{\geqslant 0}\ \big\vert\ \text{the divisor }-K_X-uS\text{ is pseudoeffective}\Big\}. \end{align*} $$

For $u\in [0,\tau ]$ , let $P(u)$ be the positive part of the Zariski decomposition of the divisor $-K_X-uS$ , and let $N(u)$ be its negative part. Suppose, in addition, that

$$ \begin{align*}N(u)=\sum_{j=1}^l f_j(u) E_j \end{align*} $$

for some irreducible reduced surfaces $E_1,\dots ,E_l$ on the Fano threefold X that are different from S, where each $f_i\colon [0,\tau ]\to \mathbb {R}_{\geqslant 0}$ is some function. For every $j\in \{1,\ldots ,l\}$ , we set $c_j=\mathrm {lct}_{P}(S;E_j|_S)$ . As in Appendix 1, we set $\delta _P(S)=\delta _P(S,-K_S)$ . Define $S(W^S_{\bullet ,\bullet };F)$ and $\delta _{P}(S;W^S_{\bullet ,\bullet })$ as in [Reference Araujo, Castravet, Cheltsov, Fujita, Kaloghiros, Martinez-Garcia, Shramov, Süß and Viswanathan3, §1], or define these numbers using the formulas used in (3.1).

Lemma 27. Let F be any prime divisor over S such that $P\in C_S(F)$ . Then

(♢) $$ \begin{align} S\big(W^S_{\bullet,\bullet};F\big)&\leqslant A_S(F)\frac{3}{(-K_X)^3}\int_0^\tau\sum_{j=1}^\tau\frac{f_j(u)}{c_j}\big(P(u)\big|_S\big)^2du+\\& \quad +\frac{3}{(-K_X)^3}\int_0^\tau\int_0^\infty\mathrm{vol}\big(P(u)\big|_S-vF\big)dvdu\leqslant \nonumber\\& \leqslant A_S(F)\Biggl(\frac{3}{(-K_X)^3}\sum_{j=1}^l \int_0^\tau \frac{f_j(u)}{c_j}\big(P(u)\big|_S\big)^2 du+\frac{3}{(-K_X)^3}\frac{\tau(-K_S)^2}{\delta_P(S)}\Biggr).\nonumber \end{align} $$

In particular, we have

$$ \begin{align*} \delta_{P}\big(S;W^S_{\bullet,\bullet}\big)\geqslant\Biggl(\frac{3}{(-K_X)^3}\sum_{j=1}^l \int_0^\tau \frac{f_j(u)}{c_j}\big(P(u)\big|_S\big)^2 du+\frac{3}{(-K_X)^3}\frac{\tau(-K_S)^2}{\delta_P(S)}\Biggr)^{-1}. \end{align*} $$

Proof. Since the log pair $(S, c_j E_j|_S)$ is log canonical at P, we conclude that $\mathrm {ord}_F(E_j|_S)\leqslant \frac {A_S(F)}{c_j}$ . Thus, we get the first inequality in (). Moreover, since $P(u)|_S=-K_S-N(u)|_S$ , we have

$$ \begin{align*}\int_0^\tau\int_0^\infty\mathrm{vol}(P(u)|_S-vF\big)dvdu\leqslant\int_0^\tau (-K_S)^2 S_S(F)du =\tau (-K_S)^2 S_S(F)\leqslant A_S(F) \frac{\tau (-K_S)^2}{\delta_P(S)}. \end{align*} $$

Hence, the assertion follows.

Corollary 28. Suppose that $N(u)=0$ for every $u\in [0,\tau ]$ , that is, we have $l=0$ . Then

$$ \begin{align*}\delta_P(S,W^S_{\bullet,\bullet})\geqslant\frac{(-K_X)^3\delta_P(S)}{3\tau(-K_S)^2}. \end{align*} $$

Corollary 29. Suppose that  $l=1$ , $E_1|_S$ is a smooth curve contained in $S\setminus \mathrm {Sing}(S)$ , and

$$ \begin{align*}f_1(u)= \left\{\begin{aligned} &0,\ \text{if }u\in[0,t], \\ &c(u-t),\ \text{if }u\in[t,\tau], \\ \end{aligned} \right. \end{align*} $$

for some $t\in (0,\tau )$ and some $c\in \mathbb {R}_{>0}$ . Then

$$ \begin{align*}\delta_{P}\big(S;W^S_{\bullet,\bullet}\big)\geqslant \Biggl( \frac{3}{(-K_X)^3}\int_t^\tau c(u-t)\big(P(u)\big\vert_S\big)^2du +\frac{3}{(-K_X)^3}\frac{\tau(-K_S)^2}{\delta_P(S)}\Biggr)^{-1}. \end{align*} $$

Acknowledgments

We would like to thank the Nemuro city council and Saitama University for excellent working conditions. We would like to thank an anonymous referee for useful comments.

Footnotes

Throughout this paper, all varieties are assumed to be projective and defined over ℂ.

Cheltsov has been supported by JSPS Invitational Fellowships for Research in Japan (S22040) and by EPSRC Grant Number EP/V054597/1 (The Calabi problem for smooth Fano threefolds). Fujita, Kishimoto, and Okada have been supported by JSPS KAKENHI Grant Grant-in-Aid for Scientific Research (C) Numbers 22K03269, 19K03395, and JP22H01118, respectively.

References

Abban, H. and Zhuang, Z., K-stability of Fano varieties via admissible flags , Forum Math. Pi 10 (2022), E15.CrossRefGoogle Scholar
Abban, H. and Zhuang, Z., Seshadri constants and K-stability of Fano manifolds, to appear in Duke Math. J. (2022).10.1215/00127094-2022-0026CrossRefGoogle Scholar
Araujo, C., Castravet, A.-M., Cheltsov, I., Fujita, K., Kaloghiros, A.-S., Martinez-Garcia, J., Shramov, C., Süß, H., and Viswanathan, N., The Calabi Problem for Fano Threefolds, Mathematical Society Lecture Notes Series 485, Cambridge University Press, London, 2023.CrossRefGoogle Scholar
Belousov, G. and Loginov, K., K-stability of Fano threefolds of rank $4$ and degree $24$ , preprint, arXiv:2206.12208 Google Scholar
Cheltsov, I., Denisova, E., and Fujita, K., K-stable smooth Fano threefolds of Picard rank two, preprint, arXiv:2210.14770 Google Scholar
Cheltsov, I. and Park, J., K-stable Fano threefolds of rank  $2$  and degree  $30$ , Eur. J. Math. 8 (2022), 834852.10.1007/s40879-022-00569-xCrossRefGoogle Scholar
Cheltsov, I. and Prokhorov, Y., Del Pezzo surfaces with infinite automorphism groups . Algebr. Geom. 8 (2021), 319357.CrossRefGoogle Scholar
Coray, D. and Tsfasman, M., Arithmetic on singular Del Pezzo surfaces , Proc. Lond. Math. Soc. 57 (1988), 2587.CrossRefGoogle Scholar
Denisova, E., On K-stability of  ${\mathbb{P}}^3$  blown up along the disjoint union of a twisted cubic curve and a line, preprint, arXiv:2202.04421 Google Scholar
Fujita, K., On K-stability and the volume functions of  $\mathbb{Q}$ -Fano varieties , Proc. Lond. Math. Soc. 113 (2016), 541582.10.1112/plms/pdw037CrossRefGoogle Scholar
Fujita, K., A valuative criterion for uniform K-stability of  $\mathbb{Q}$ -Fano varieties , J. Reine Angew. Math. 751 (2019), 309338.CrossRefGoogle Scholar
Fujita, K., On K-stability for Fano threefolds of rank  $3$  and degree  $28$ , Int. Math. Res. Not. IMRN 2022, rnac190.Google Scholar
Li, C., K-semistability is equivariant volume minimization , Duke Math. J. 166 (2017), 31473218.10.1215/00127094-2017-0026CrossRefGoogle Scholar
Liu, Y., K-stability of Fano threefolds of rank $2$ and degree $14$ as double covers, Math. Z. 303 (2023). https://doi.org/10.1007/s00209-022-03192-4 CrossRefGoogle Scholar
Prokhorov, Y., The rationality problem for conic bundles , Russian Math. Surveys 73 (2018), 375456.10.1070/RM9811CrossRefGoogle Scholar
Xu, C. and Liu, Y., K-stability of cubic threefolds , Duke Math. J. 168 (2019), 20292073.Google Scholar