Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T07:27:13.618Z Has data issue: false hasContentIssue false

Palynofloral patterns of terrestrial ecosystem change during the end-Triassic event – a review

Published online by Cambridge University Press:  01 September 2015

SOFIE LINDSTRÖM*
Affiliation:
Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
*
*Author for correspondence: sli@geus.dk

Abstract

A review of the palynofloral succession at the well-documented Triassic–Jurassic boundary sites – Kuhjoch (Austria), St Audrie's Bay (UK), Stenlille (Denmark), Astartekløft (Greenland), Sverdrup Basin (Arctic Canada), Northern Carnarvon Basin (Western Australia), Southeast Queensland (eastern Australia) and New Zealand – show all sites experienced major to moderate re-organization of the terrestrial vegetation during the end-Triassic event. The changes led to subsequent taxonomic losses of between 17% and 73% of the Rhaetian pre-extinction palynoflora. The majority of the typical Rhaetian taxa that disappear are so far not known from in situ occurrences in reproductive structures of macrofossil plant taxa. From an ecological perspective, the most dramatic changes occurred in the Sverdrup Basin, Stenlille, Kuhjoch and Carnarvon Basin, where the pre- and post-extinction palynofloras were fundamentally different in both composition and dominance. These changes correspond to ecological severity Category I of McGhee et al. (2004), while the remaining sites are placed in their Subcategory IIa because there the pre-extinction ecosystems are disrupted, but recover and are not replaced post-extinction. Increased total abundances of spores on both hemispheres during the extinction and recovery intervals may indicate that environmental and/or climatic conditions became less favourable for seed plants. Such conditions may include expected effects of volcanism in the Central Atlantic Magmatic Province, such as acid rain, terrestrial soil and freshwater acidification due to volcanic sulfur dioxide emissions, fluctuating ultraviolet flux due to ozone depletion caused by halogens and halocarbon compounds, and drastic changes in climatic conditions due to greenhouse gas emissions.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbink, O. A. 1998. Palynological Investigation in the Jurassic of the North Sea Region. LPP Contribution Series 8. LPP Foundation, University of Utrecht, 192 pp.Google Scholar
Achilles, H. 1981. Die rhaetische und liassische Mikroflora Frankens. Palaeontographica Abteilung B 179, 186.Google Scholar
Akikuni, K., Hori, R. S., Vajda, V., Grant-Mackie, J. A. & Ikehara, M. 2010. Stratigraphy of Triassic–Jurassic boundary sequences from the Kawhia coast and Awakino gorge, Murihiku Terrane, New Zealand. Stratigraphy 7, 724.CrossRefGoogle Scholar
Alvin, K. L. 1982. Cheirolepidiaceae: biology, structure and palaeoecology. Review of Palaeobotany and Palynology 37, 7198.CrossRefGoogle Scholar
Backhouse, J. & Balme, B. E. 2002. Late Triassic Palynology of the Northern Carnarvon Basin. Minerals and Energy Research Institute of Western Australia Report 226, 168 pp.Google Scholar
Barrón, E., Gomez, J. J., Goy, A. & Pieren, A. P. 2006. The Triassic–Jurassic boundary in Asturias (northern Spain): palynological characterization and facies. Review of Palaeobotany and Palynology 138, 187208.CrossRefGoogle Scholar
Batten, D. J. 1974. Wealden palaeoecology from the distribution of plant fossils. Proceedings of the Geologists’ Association 85, 433–58.CrossRefGoogle Scholar
Batten, D. J. 1996. 20E – Upper Jurassic and Cretaceous miospores. In Palynology: Principles and Applications (eds Jansonius, J. & McGregor, D. C.), pp. 807–30. American Association of Stratigraphical Palynologists Foundation 2.Google Scholar
Belcher, C. M., Mander, L., Rein, G., Jervis, F. X., Haworth, M., Hesselbo, S. P., Glasspool, I. J. & McElwain, J. C. 2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate driven floral change. Nature Geoscience 3, 426–9.CrossRefGoogle Scholar
Black, B. A., Lamarque, J.-F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. 2014. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42, 6770.CrossRefGoogle Scholar
Bloos, G. & Page, K. N. 2000. The basal Jurassic ammonite succession in the North-West European Province: review and new results. GeoResearch Forum 6, 2740.Google Scholar
Bomfleur, B., Schöner, R., Schneider, J. W., Viereck, L., Kerp, H. & McKellar, J. L. 2014. From the Transantarctic Basin to the Ferrar Large Igneous Province – new palynostratigraphic age constraints for the Triassic–Jurassic sedimentation and magmatism in East Antarctica. Review of Palaeobotany and Palynology 207, 1837.CrossRefGoogle Scholar
Bond, D. P. G. & Wignall, P. B. 2014. Large igneous provinces and mass extinctions: an update. In Volcanism, Impacts, and Mass Extinctions: Causes and Effects (eds Keller, G. & Kerr, A. C.), pp. 29–55. Geological Society of America, Special Paper no. 505.Google Scholar
Bonis, N. R. & Kürschner, W. M. 2012. Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary. Paleobiology 38, 240–64.CrossRefGoogle Scholar
Bonis, N. R., Kürschner, W. M. & Krystyn, L. 2009. A detailed palynological study of the Triassic–Jurassic transition in key sections of the Eiberg Basin (Northern Calcareous Alps, Austria). Review of Palaeobotany and Palynology 156, 376400.CrossRefGoogle Scholar
Bonis, N. R., Ruhl, M. & Kürschner, W. M. 2010. Milankovitch-scale palynological turnover across the Triassic – Jurassic transition at St. Audrie's Bay, SW UK. Journal of the Geological Society, London 167, 877–88.CrossRefGoogle Scholar
Boulter, M. C. & Windle, T. 1993. A reconstruction of some Middle Jurassic vegetation in northern Europe. Special Papers in Palaeontology 49, 125–54.Google Scholar
Brugman, W. A., van Bergen, P. F. & Kerp, J. H. F. 1993. A quantitative approach to Triassic palynology, the Lettenkeuper of the Germanic Basin as an example. In Sedimentation of Organic Particles (ed. Traverse, A.), pp. 409–29. Cambridge: Cambridge University Press.Google Scholar
Cirilli, S., Marzoli, A., Tanner, L., Bertrand, H., Buratti, N., Jourdan, F., Bellieni, G., Kontak, D. & Renne, P. R. 2009. Latest Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): new stratigraphic constraints. Earth and Planetary Science Letters 286, 514–25.CrossRefGoogle Scholar
Clémence, M.-E., Bartolini, A., Gardin, S., Paris, G., Beaumont, V. & Page, K. N. 2010 a. Early Hettangian benthic-planktonic coupling at Doniford (SW England): palaeoenvironmental implications for the aftermath of the end-Triassic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 102–15.CrossRefGoogle Scholar
Clémence, M. E., Gardin, S., Bartolini, A., Paris, G., Beaumont, V. & Guex, J. 2010 b. Bentho-planktonic evidence from the Austrian Alps for a decline in sea-surface carbonate production at the end of the Triassic. Swiss Journal of Geosciences 103, 293315.CrossRefGoogle Scholar
De Jersey, N. J. 1971. Early Jurassic Miospores from the Helidon Sandstone. Geological Survey of Queensland, Publication 351, Palaeontological Papers 25, 53 pp.Google Scholar
De Jersey, N. J. & McKellar, J. L. 2013. The palynology of the Triassic–Jurassic transition on southeastern Queensland, Australia, and correlation with New Zealand. Palynology 37, 77114.CrossRefGoogle Scholar
De Jersey, N. J. & Raine, J. I. 1990. Triassic and Earliest Jurassic Miospores from the Murihiku Supergroup, New Zealand. Geological Survey, Paleontological Bulletin 62, 164 pp.Google Scholar
Dybkjær, K. 1991. Palynological zonation and palynofacies investigation of the Fjerritslev Formation (Lower Jurassic–basal Middle Jurassic) in the Danish Subbasin. Danmarks Geologiske Undersøgelse Serie A 30, 122.CrossRefGoogle Scholar
Droser, M. L., Bottjer, D. J., Sheehan, P. M. & McGhee, G. R. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28, 675–8.2.0.CO;2>CrossRefGoogle Scholar
Fowell, S. J. & Olsen, P. E. 1993. Time calibration of Triassic/Jurassic microfloral turnover, eastern North America. Tectonophysics 222, 361–9.CrossRefGoogle Scholar
Francis, J. E. 1983. The dominant conifer of the Jurassic Purbeck Formation, England. Palaeontology 26, 277–94.Google Scholar
Francis, J. E. 1984. The seasonal environment of the Purbeck (Upper Jurassic) fossil forests. Palaeogeography, Palaeoclimatology, Palaeoecology 48, 285307.CrossRefGoogle Scholar
Galli, M. T., Jadoul, F., Bernasconi, S. M., Cirilli, S. & Weissert, H. 2007. Stratigraphy and palaeoenvironmental analysis of the Triassic–Jurassic transition in the western Southern Alps (Northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 244, 5270.CrossRefGoogle Scholar
Gómez, J. J., Goy, A. & Barrón, E. 2007. Events around the Triassic–Jurassic boundary in northern and eastern Spain: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 89110.CrossRefGoogle Scholar
Götz, A. E., Ruckwied, K., Pálfy, J. & Haas, J. 2009. Palynological evidence of synchronous changes within the terrestrial and marine realm at the Triassic/Jurassic boundary (Csovár section, Hungary). Review of Palaeobotany and Palynology 156, 401–9.CrossRefGoogle Scholar
Hallam, A. 1997. Estimates of the amount and rate of sea-level change across the Rhaetian–Hettangian and Pliensbachian–Toarcian boundaries (latest Triassic to early Jurassic). Journal of the Geological Society, London 154, 773–9.CrossRefGoogle Scholar
Hallam, A. & Wignall, P. B. 1999. Mass extinction and sea-level change. Earth-Science Reviews 48, 217–58.CrossRefGoogle Scholar
Hallam, A. & Wignall, P. B. 2000. Facies change across the Triassic–Jurassic boundary in Nevada USA. Journal of the Geological Society, London 157, 4954.CrossRefGoogle Scholar
Harris, T. M. 1937. The fossil flora of Scoresby Sound, East Greenland, Part 5. Stratigraphic relations of the plant beds. Meddelelser om Grønland 112, 1112.Google Scholar
Hermann, E., Hochuli, P. A., Bucher, H. & Roohi, G. 2012. Uppermost Permian to Middle Triassic palynology of the Salt Range and Surghar Range, Pakistan. Review of Palaeobotany and Palynology 169, 6195.CrossRefGoogle Scholar
Herngreen, G. F. W. & de Boer, K. F. 1974. Palynology of Rhaetian, Liassic and Dogger strata in the Eastern Netherlands. Geologie en Mijnbouw 53, 343–68.Google Scholar
Hesselbo, S. P., Robinson, S. A., Surlyk, F. & Piasecki, S. 2002. Terrestrial and marine extinction at the Triassic–Jurassic boundary synchronized with major carbon-cycle perturbations: a link to initiation of massive volcanism? Geology 30, 251–4.2.0.CO;2>CrossRefGoogle Scholar
Heunisch, C., Luppold, F. W., Reinhardt, L. & Röhling, H.-G. 2010. Palynofazies, bio- und lithostratigraphie im Grenzbereich Trias/Jura in der Bohrung Mariental 1 (Lappwaldmulde, Ostniedersachsen). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 161, 5198.CrossRefGoogle Scholar
Hillebrandt, A. v. & Krystyn, L. 2009. On the oldest Jurassic ammonites of Europe (Northern Calcareous Alps, Austria) and their global significance. Neues Jahrbuch für Geologie und Paläeontologie Abhandlungen 253, 163–95.CrossRefGoogle Scholar
Hillebrandt, A. v., Krystyn, L., Kürschner, W. M., Bonis, N. R., Ruhl, M., Richoz, S., Schobben, M. A. N., Urlichs, M., Bown, P. R., Kment, K., McRoberts, C. A., Simms, M. & Tomãsových, A. 2013. The Global Stratotype Sections and Point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria). Episodes 36, 162–98.CrossRefGoogle Scholar
Hounslow, M. W., Posen, P. E. & Warrington, G. 2004. Magnetostratigraphy and biostratigraphy of the Upper Triassic and lowermost Jurassic succession, St. Audrie's Bay, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 331–58.CrossRefGoogle Scholar
Hubbard, R. N. L. B. & Boulter, M. C. 1997. Mid Mesozoic floras and climates. Palaeontology 40, 4370.Google Scholar
Kiessling, W., Aberhan, M., Brenneis, B. & Wagner, P. J. 2007. Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 201–22.CrossRefGoogle Scholar
Kürschner, W. M., Bonis, N. R. & Krystyn, L. 2007. Carbon-isotope stratigraphy and palynostratigraphy of the Triassic–Jurassic transition in the Tiefengraben section – Northern Calcareous Alps (Austria). Palaeogeography, Palaeoclimatology, Palaeoecology 244, 257–80.CrossRefGoogle Scholar
Kürschner, W. M., Mander, L. & McElwain, J. C. 2014. A gymnosperm affinity for Ricciisporites tuberculatus Lundblad: implications for vegetation and environmental reconstructions in the Late Triassic. Palaeobiodiversity and Palaeoenvironments 94, 295305.CrossRefGoogle Scholar
Lindström, S. & McLoughlin, S. 2007. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: implications for palynofloristic turnover across Gondwana. Review of Palaeobotany and Palynology 145, 89122.CrossRefGoogle Scholar
Lindström, S., Pedersen, G. K., van de Schootbrugge, B., Hansen, K. H., Kuhlmann, N., Thein, J., Johansson, L., Petersen, H. I., Alwmark, C., Dybkjær, K., Weibel, R., Erlström, M., Nielsen, L. H., Oschmann, W. & Tegner, C. 2015. Intense and widespread seismicity during the end-Triassic mass extinction due to emplacement of a large igneous province. Geology 43, 387–90.CrossRefGoogle Scholar
Lindström, S., van de Schootbrugge, B., Dybkjær, K., Pedersen, G. K., Fiebig, J., Nielsen, L. H. & Richoz, S. 2012. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass-extinction. Geology 40, 531–4.CrossRefGoogle Scholar
Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. 1999. The delayed resurgence of equatorial forests after the Permian–Triassic ecological crisis. Proceedings of the National Academy of Sciences USA 96, 13857–62.CrossRefGoogle Scholar
Lund, J. J. 1977. Rhaetic to Lower Liassic palynology of the onshore south-eastern North Sea Basin. Danmarks Geologiske Undersøgelse II Række 109, 1129.CrossRefGoogle Scholar
Mander, L., Collinson, M. E., Chaloner, W. G., Brain, A. P. R. & Long, D. G. 2012. The ultrastructure and botanical affinity of the problematic mid-Mesozoic palynomorph Ricciisporites tuberculatus Lundblad. International Journal of Plant Sciences 173, 429–40.CrossRefGoogle Scholar
Mander, L., Kürschner, W. M. & McElwain, J. C. 2010. An explanation for conflicting records of Triassic – Jurassic plant diversity. Proceedings of the National Academy of Sciences USA 107, 15351–6.CrossRefGoogle ScholarPubMed
Mander, L., Kürschner, W. M. & McElwain, J. C. 2013. Palynostratigraphy and vegetation history of the Triassic – Jurassic transition in East Greenland. Journal of the Geological Society, London 170, 3746.CrossRefGoogle Scholar
Mander, L., Twitchett, R. J. & Benton, M. J. 2008. Palaeoecology of the Late Triassic extinction event in the SW UK. Journal of the Geological Society, London 165, 319–32.CrossRefGoogle Scholar
Marynowski, L. & Simoneit, B. R. T. 2009. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios 24, 785–98.CrossRefGoogle Scholar
McElwain, J. C., Popa, M. E., Hesselbo, S. P., Haworth, M. & Surlyk, F. 2007. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology 33, 547–73.CrossRefGoogle Scholar
McElwain, J. C. & Punyasena, S. W. 2007. Mass extinction events and the plant fossil record. Trends in Ecology and Evolution 22, 548–56.CrossRefGoogle ScholarPubMed
McGhee, G. R., Clapham, M. E., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. 2013. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology 370, 260–70.CrossRefGoogle Scholar
McGhee, G. R., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 289–97.CrossRefGoogle Scholar
Mussard, J.-M., Ducazeaux, J. & Cugny, P. 1997. Statistical analyses of palynomorph assemblages in Middle Jurassic deposits (Lower to Middle Bathonian, Brent Group, Norway). Bulletin du Centre de Recherches Elf Exploration Production 18, 265–77.Google Scholar
Nielsen, L. H. 2003. Late Triassic–Jurassic development of the Danish Basin and the Fennoscandian Border Zone, southern Scandinavia. Geological Survey of Denmark and Greenland Bulletin 1, 459526.CrossRefGoogle Scholar
Olsen, P. E., Kent, D. V., Sues, H.-D., Koeberl, C., Huber, H., Montanari, A., Rainforth, E. C., Fowell, S. J., Szajna, M. J. & Hartline, B. W. 2002. Ascent of dinosaurs linked to an iridium anomaly at the Triassic–Jurassic boundary. Science 296, 1305–7.CrossRefGoogle Scholar
Orbell, G. 1973. Palynology of the British Rhaeto–Liassic. Bulletin of the Geological Survey of Great Britain 44, 144.Google Scholar
Orlowska-Zwolinska, T. 1983. Palynostratigraphy of the upper part of the Triassic epicontinental sediments in Poland. Prace Instytutu Geologicznego 104, 189.Google Scholar
Page, C. N. 2002. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology 119, 133.CrossRefGoogle Scholar
Pedersen, K. R. 1983. Ultrastructure of Ricciisporites, an upper Triassic pollen tetrad. Abstracts of the European Palaeobotanical Conference, 11–16 July 1983, Montpellier, France.Google Scholar
Petersen, H. I. & Lindström, S. 2012. Synchronous wildfire activity rise and mire deforestation at the Triassic–Jurassic boundary. PLoS One 7, e47236.CrossRefGoogle ScholarPubMed
Pedersen, K. R. & Lund, J. J. 1980. Palynology of the plant-bearing Rhaetian to Hettangian Kap Stewart Formation, Scoresby Sund, East Greenland. Review of Palaeobotany and Palynology 31, 169.CrossRefGoogle Scholar
Pieńkowski, G., Niedźwiedzki, G. & Waksmundzka, M. 2012. Sedimentological, palynological and geochemical studies of the terrestrial Triassic–Jurassic boundary in northwestern Poland. Geological Magazine 149, 308–22.CrossRefGoogle Scholar
Preto, N., Kustatscher, E. & Wignall, P. B. 2010. Triassic climates – state of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 110.CrossRefGoogle Scholar
Rauscher, R., Hilly, J., Hanzo, M. & Marchal, C. 1995. Palynologie des couches de passage du Trias supérieur au Lias dans l’est du basin Parisien: problems de datation du “Rhétien” de Lorraine. Sciences Géologiques Bulletin 48, 159–85.CrossRefGoogle Scholar
Reinhardt, L. & Ricken, W. 2000. Climate cycles documented in a playa system: comparison of geochemical signatures derived from subbasins (Triassic, Middle Keuper, Germany). Zentralblatt für Geologie und Paläontologie 1, 315–40.Google Scholar
Retallack, G. 1975. The life and times of a Triassic lycopod. Alcheringa 1, 329.CrossRefGoogle Scholar
Richoz, S., van de Schootbrugge, B., Pross, J., Püttmann, W., Quan, T. M., Lindström, S., Heunisch, C., Fiebig, J., Maquil, R., Schouten, S., Hauzenberger, C. A. & Wignall, P. B. 2012. Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nature Geoscience 5, 662–7.CrossRefGoogle Scholar
Riding, J. B., Mantle, D. J. & Backhouse, J. 2010. A review of the chronostratigraphical ages of Middle Triassic to Late Jurassic dinoflagellate cyst biozones of the North West Shelf of Australia. Review of Palaeobotany and Palynology 162, 543–75.CrossRefGoogle Scholar
Roghi, G. 2004. Palynological investigations in the Carnian of the Cave del Predil area (Julian Alps, NE Italy). Review of Palaeobotany and Palynology 132, 135.CrossRefGoogle Scholar
Ruckwied, K. & Götz, A. E. 2009. Climate change at the Triassic/Jurassic boundary: palynological evidence from the Furkaska section (Tatra Mountains, Slovakia). Geologica Carpathica 60, 139–49.CrossRefGoogle Scholar
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U. & Blackburn, T. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38, 387–90.CrossRefGoogle Scholar
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W. U., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M. T. & Willumsen, P. S. 2010. The Chicxulub asteroid impact and mass-extinction at the Cretaceous–Paleogene boundary. Science 327, 1214–8.CrossRefGoogle ScholarPubMed
Schuurman, W. M. L. 1977. Aspects of late Triassic palynology. 2. Palynology of the “Grés et Schiste à Avicula contorta” and “Argiles de Levallois” (Rhaetian) of northeastern France and southern Luxemburg. Review of Palaeobotany and Palynology 23, 159–69.CrossRefGoogle Scholar
Sepkoski, J. J. 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. In Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, O. H.), pp. 3551. Berlin: Springer.CrossRefGoogle Scholar
Steinthorsdottir, M., Woodward, F. I., Surlyk, F. & McElwain, J. C. 2012. Deep-time evidence of a link between elevated CO2 concentrations and perturbations in the hydrological cycle via drop in plant transpiration. Geology 40, 815–8.CrossRefGoogle Scholar
Stevens, G. R. 2012. Otapirian and Aratauran sequences (latest Triassic and earliest Jurassic) along the northern Marokopa coast (SW Auckland, New Zealand) and observations on the Triassic/Jurassic boundary in New Zealand. New Zealand Journal of Geology and Geophysics 55, 3751.CrossRefGoogle Scholar
Suneby, L. B. & Hills, L. V. 1988. Palynological zonation of the Heiberg Formation (Triassic–Jurassic) eastern Sverdrup Basin, Arctic Canada. Bulletin of Canadian Petroleum Geology 36, 347–61.Google Scholar
Sweet, A. R. & Braman, D. R. 1992. The K–T boundary and contiguous strata in western Canada: interactions between paleoenvironments and palynological assemblages. Cretaceous Research 13, 3179.CrossRefGoogle Scholar
Vajda, V., Raine, J. I. & Hollis, C. J. 2001. Indication of global deforestation at the Cretaceous –Tertiary boundary by New Zealand fern spike. Science 294, 1700–2.CrossRefGoogle ScholarPubMed
Vakhrameev, V. A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press, 318 pp.Google Scholar
van de Schootbrugge, B., Quan, T. M., Lindström, S., Püttmann, W., Heunisch, C., Pross, J., Fiebig, J., Petschick, R., Röhling, H.-G., Richoz, S., Rosenthal, Y. & Falkowski, P. G. 2009. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience 2, 589–94.CrossRefGoogle Scholar
van de Schootbrugge, B., Tremolada, F., Rosenthal, Y., Bailey, T. R., Feist-Burkhardt, S., Brinkhuis, H., Pross, J., Kent, D. V. & Falkowski, P. G. 2007. End-Triassic calcification crisis and blooms of organic-walled “disaster species”. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 126–41.CrossRefGoogle Scholar
van Konijnenburg-van Cittert, J. H. A. 2002. Ecology of some Late Triassic to Early Cretaceous ferns in Eurasia. Review of Palaeobotany and Palynology 119, 113–24.CrossRefGoogle Scholar
van Konijnenburg-van Cittert, J. H. A. 2008. The Jurassic fossil plant record of the UK area. Proceedings of the Geologists’ Association 119, 5972.CrossRefGoogle Scholar
Visscher, H. & van der Zwan, C. J. 1981. Palynology of the Circum-Mediterranean Triassic: phytological and palaeoclimatological implications. Geologische Rundschau 70, 625–34.CrossRefGoogle Scholar
Visscher, H., van Houte, M., Brugman, W. A. & Poort, R. J. 1994. Rejection of Carnian (late Triassic) “pluvial event” in Europe. Review of Palaeobotany and Palynology 83, 217–26.CrossRefGoogle Scholar
Ward, P. D., Haggart, J. W., Carter, E. S., Wilbur, D., Tipper, H. W. & Evans, T. 2001. Sudden productivity collapse associated with the Triassic–Jurassic boundary mass-extinction. Science 292, 1148–51.CrossRefGoogle ScholarPubMed
Warrington, G., Cope, J. C. W. & Ivimey-Cook, H. C. 1994. St. Audrie's Bay, Somerset, England: a candidate Global Stratotype Section and Point for the base of the Jurassic. Geological Magazine 131, 191200.CrossRefGoogle Scholar
Whiteside, J. H., Olsen, P. G., Kent, D. V., Fowell, S. J. & Et-Touhami, M. 2007. Synchrony between the Central Atlantic Magmatic Province and the Triassic–Jurassic mass-extinction event? Palaeogeography, Palaeoclimatology, Palaeoecology 244, 345–67.CrossRefGoogle Scholar
Whiteside, J. H. & Ward, P. D. 2011. Ammonoid diversity and disparity track episodes of chaotic carbon cycling during the early Mesozoic. Geology 39, 99102.CrossRefGoogle Scholar
Yaroshenko, O. P. 2007. Late Triassic palynological flora from Western Ciscaucasia. Palaeontological Journal 41, 1190–7.CrossRefGoogle Scholar
Yong, L., Allen, P. A., Densmore, A. L. & Qiang, X. 2003. Evolution of the Longmen Shan foreland basin (Western Sichuan, China) during the Late Triassic Indosinian Orogeny. Basin Research 15, 117–38.CrossRefGoogle Scholar
Zhang, W. & Grant-Mackie, J. A. 2001. Late Triassic–Early Jurassic palynological assemblages from Murihiku strata of New Zealand, and comparisons with China. Journal of the Royal Society of New Zealand 31, 575683.Google Scholar
Ziaja, J. 2006. Lower Jurassic spores and pollen grains from Odrowąż, Mesozoic margin of the Holy Cross Mountains, Poland. Acta Palaeobotanica 46, 383.Google Scholar